Tìm p là số tự nhiên sao cho p+8;p+10 đều là số nguyên tố
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
1) tìm số tự nhiên bé hơn 500 sao cho chia nó cho 15 , cho 34 số dư theo thứ tự là 8 và 13
2) tìm số tự nhiên n sao cho 18n + 3 chia hết cho 7
Tìm số tự nhiên n sao cho \(\frac{n^2+8}{n+8}\)
là số tự nhiên
ĐKXĐ : \(n+8\ne0\Rightarrow n\ne-8\)
Để \(\frac{n^2+8}{n+8}\)là số tự nhiên \(\Rightarrow\left(n^2+8\right)⋮\left(n+8\right)\)
Để \(\left(n^2+8\right)⋮\left(n+8\right)\)\(\Rightarrow n^2-n=0\)
\(\Leftrightarrow n\left(n-1\right)=0\Rightarrow n=0\)hoặc \(n-1=0\Leftrightarrow n=1\)( TM )
Tô Hoài An chỗ đặt tính chia bạn làm chưa đúng. Phải ra thương là (n-8), dư 72.
Xin lỗi cậu rất nhiều. Vì lúc làm tớ làm ẩu đoảng quá nên sai lỗi cơ bản như vậy. Mong cậu tha thứ cho 1 đứa bị trúng lời nguyền như mình !
Vẫn tìm ĐKXĐ như trên.
Để \(\frac{n^2+8}{n+8}\)là số tự nhiên \(\Rightarrow\left(n^2+8\right)⋮\left(n+8\right)\)\(\Rightarrow72⋮\left(n+8\right)\)
Vì \(n\in N\Rightarrow\left(n+8\right)\inƯ_{\left(72\right)}\in N=\left\{1;2;3;4;6;8;9;12;18;24;36;72\right\}\)
n + 8 | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 18 | 24 | 36 | 72 |
n | - 7 | - 6 | - 5 | - 4 | - 2 | 0 | 1 | 4 | 10 | 16 | 28 | 64 |
Một lần nữa xin cậu tha lỗi cho sự sai sót ngu người của mình.
1.cho n=2.3.4.5.6.7 có
chứng tỏ 6 số tự nhiên liên tiếp sau đều là hợp số
2 .tìm n thuộc N sao cho n+8 chia hết cho n+1
3.tìm số tự nhiên p sao cho
a, 3p+5 là số nguyên tố
b,p+8 và p+10 là số nguyn tố
tìm số tự nhiên n sao cho (n-2)/(n+1)+8/(n+1) là số tự nhiên
Ta có: n-2/(n+1)+8/(n+1)
=(n-2+8)/(n+1)
=n+6/(n+1)
=> n+1+5 chia hết cho n+1
=>5 chia hết cho n+1
=> n+1 /(in/) Ư(5)={-1;1;5;-5}
Mà n là số tự nhiên
=> n+1 /(in/) {1;5}
Ta có bảng sau:
n+1| 1 |5
n | 0 |4
VẬY n /(in/) {0;4}
/(in/)=\(in\)= thuộc nha mik viết lộn á
Tìm số tự nhiên có 3 chữ số, sao cho chia cho 17, cho 25 được các số dư theo thứ tự là 8, 16
Gọi số phải tìm là a (a # 0)
Ta có : a chia 17 dư 8 => a + 9 chia hết cho 17
a chia 25 dư 16 => a + 9 chia hết cho 25
Từ 2 điều kiện trên => a + 9 thuộc ƯC(17;25) thuộc {425; 850; 1725...)
Mà a là số có 3 csố => a + 9=425 hoặc a+9=850
=>a=416 hoặc a=841
Vậy số phải tìm là 416 và 841
Số cần tìm là 416,841
Ai thích thì k hộ mi⚽⚽⚽k
1, tìm số tự nhiên lớn nhất có 3 chữ số sao cho chia nó cho 2,3,4,5,6 và được số dư theo thứ tự là 2,3,4,5.
2, tìm số tự nhiên có 3 chữ số sao cho chia nó cho 17,25 ta được số dư 8 và 16.
3, tìm số nguyên tố P sao cho:P+6,P+12,P+24,P+38 cũng là số nguyên tố.
4, tìm số tự nhiên a,b để:
A= 25a5b chia hết cho 36 và a38b chia hết cho 72 ( 25a5b và a38b có gạch gang)
a) Tìm số tự nhiên n sao cho 4n + 7 chia hết cho 2n + 1 b) Tìm số nguyên tố P sao cho P + 8 và P + 16 cũng là số nguyên tố
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
1) Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 3, 5, 7 thì được số dư lần lượt là 2, 3, 4?
2) Tìm số tự nhiên lớn nhất có 3 chữ số sao cho khi chia n cho 8 dư 7, chia n cho 31 dư 28?
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3; 5; 7). Do 3; 5 và 7 là các số nguyên tố cùng nhau nên BCNN(3; 5; 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8; 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8; 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài