Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Eden Hazard
Xem chi tiết
.
11 tháng 3 2020 lúc 14:41

A=1+2015+20152+...+201599

=> 2015A=2015+20152+20153+...+2015100

=> 2015A-A=(2015+20152+20153+...+2015100)-(1+2015+20152+...+201599)

2014A=2015100-1

=> 2014A+1=2015100-1+1=2015100=(20152)50

Vì 2015100 bằng bình phương của 1 số tự nhiên 

=> 2014A+1 là số chính phương

Khách vãng lai đã xóa
Tran Le Khanh Linh
11 tháng 3 2020 lúc 15:44

\(A=1+2015+2015^2+...+2015^{99}\)

\(\Leftrightarrow2015A=2015+2015^2+2015^3+....+2015^{100}\)

\(\Leftrightarrow2015A-A=\left(2015+2015^2+....+2015^{100}\right)-\left(1+2015+2015^2+....+2015^{99}\right)\)

\(\Leftrightarrow2014A=2015^{100}-1\)

=> 2014A+1=\(2015^{100}=\left(2015^{50}\right)^2\)

=> 2014A+1 là số chính phương (đpcm)

Khách vãng lai đã xóa
Nguyen Thanh Long
Xem chi tiết
nguyen duc thanh
Xem chi tiết
Nguyễn Ngọc Quang
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
Hoàng Phúc
5 tháng 4 2016 lúc 15:03

\(A=1+2015+2015^2+....+2015^9\)

\(2015A=2015+2015^2+2015^3+....+2015^{10}\)

\(2015A-A=\left(2015+2015^2+2015^3+...+2015^{10}\right)-\left(1+2015+2015^2+....+2015^9\right)\)

\(2014A=2015^{10}-1\)

=>\(2014A+1=2015^{10}-1+1=2015^{10}=...5\) (vì những số tự nhiên có chữ số tận cùng=5 khi nâng lên lũy thừa bất kì (khác 0) vẫn giữ nguyên chữ số tận cùng của nó)

Mà chữ số tận cùng của 1 SCP chỉ có thể E {0;1;4;5;6;9}

=>2014A+1 là 1 SCP (đpcm)

 

Nguyễn Anh Linh Dragon B...
Xem chi tiết

khóoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo00000000000000ooooooooooo0o0o00000000000ooooooooooooooooooooooooooooooooooooooooooooooooooo

valhein
Xem chi tiết
valhein
5 tháng 3 2018 lúc 20:57

ai do giup minh voi

Nguyễn Thị Thúy
Xem chi tiết
Thái Xuân Sơn
Xem chi tiết
Phạm Tuấn Đạt
9 tháng 2 2019 lúc 20:42

\(S=1+2+2^2+...+2^{2015}\)

\(\Rightarrow2S=2+2^2+...+2^{2016}\)

\(\Rightarrow2S-S=S=2^{2016}-1\)

\(S+18=2^{2016}+18-1=2^{2016}+17\)

Tự làm , đề sai rroi