1/1.3+1/3.5+...+1/9.11<1/2
( 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11). X = 2/3
\(\text{Ta có:}\) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}\)
\(\Leftrightarrow2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}.2\)
\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).x=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right).x=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{11}\right)x=\frac{4}{3}\)
\(\Leftrightarrow\frac{10}{11}x=\frac{4}{3}\)
\(\Leftrightarrow x=\frac{4}{3}:\frac{10}{11}=\frac{22}{15}\)
Tìm y : ( 1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 ) .y = 2/3.
( \(\frac{1}{1x3}\)+ \(\frac{1}{3x5}\)+....+\(\frac{1}{9x11}\)) x \(y\) = \(\frac{2}{3}\)
( \(\frac{2}{1x3}\)+ \(\frac{2}{3x5}\)+...+\(\frac{2}{9x11}\)) x \(y\) = \(\frac{4}{3}\) (nhân 2 vế lên với 2)
(1 - \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)- ...+ \(\frac{1}{9}\)- \(\frac{1}{11}\)) x \(y\)= \(\frac{4}{3}\)
( 1 - \(\frac{1}{11}\)) x \(y\)=\(\frac{4}{3}\)
\(\frac{10}{11}\) x \(y\) =\(\frac{4}{3}\)
\(y\) = \(\frac{4}{3}\): \(\frac{10}{11}\)
\(y\) = \(\frac{4}{3}\)x \(\frac{11}{10}\)
\(y\) =\(\frac{22}{15}\)
kết quả đúng nhưng mình ko hiểu bạn có thể giáng lại ko ?
Tìm x: [12/11-(1/2+1/44].(x-0,2)=1/1.3+1/3.5+1/5.7+1/7.9+1/9.11
Mik giải phía dưới rồi đó. Câu lúc nãy bạn đăng ý
Tìm x: [12/11-(1/2+1/44].(x-0,2)=1/1.3+1/3.5+1/5.7+1/7.9+1/9.11
\(\left[\frac{12}{11}-\left(\frac{1}{2}+\frac{1}{44}\right)\right].\left(x-0,2\right)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{25}{44}.\left(x-0,2\right)=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right)\)
\(x-0,2=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right):\frac{25}{44}\)
\(x-\frac{1}{5}=\frac{22}{25}.\left(1-\frac{1}{11}\right)=\frac{22}{25}.\frac{10}{11}=\frac{4}{5}\)
\(x=\frac{4}{5}+\frac{1}{5}\)
\(x=1\)
Tính :
1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 !!
MK bt Đ/S ra 5/11 nhưng cần cách giải đúng !!
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{9\cdot11}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{9\cdot11}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{11-9}{9\cdot11}\right)\)
\(=\frac{1}{2}\left(\frac{3}{1\cdot3}-\frac{1}{1\cdot3}+\frac{5}{3\cdot5}-\frac{3}{3\cdot5}+...+\frac{7}{5\cdot7}-\frac{5}{5\cdot7}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}\cdot\frac{10}{11}\)
\(=\frac{10}{22}=\frac{5}{11}\)
Ta có :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(=\)\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\)\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\)\(\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(=\)\(\frac{1}{2}.\frac{10}{11}\)
\(=\)\(\frac{5}{11}\)
Bạn làm đúng òi
Chúc bạn học tốt ~
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}\)
\(=\frac{10}{22}=\frac{5}{11}\)
k nha
tìm x, biết
\(\frac{1}{2}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-\frac{1}{9.11}=\frac{4}{5}-x\)
\(\frac{1}{2}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-\frac{1}{9.11}=\frac{4}{5}-x\)
<=> \(2.\frac{1}{2}-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=\frac{8}{5}-2x\)
<=> \(1-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)=\frac{8}{5}-2x\)
<=> \(1-\left(1-\frac{1}{11}\right)-\frac{8}{5}=-2x\)
<=> \(-\frac{83}{55}=-2x\)
<=> \(x=\frac{83}{110}\)
tìm x,biết
\(\frac{1}{2}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-\frac{1}{9.11}=\frac{4}{5}-x\)
so sánh biểu thức với 1 A= 2/1.3 - 2/2.4 + 2/3.5 - 2/4.6 + 2/5.7 - 2/6.8 + 2/7.9 - 2/8.10 + 2/9.11 - 2/10.12
Ta có \(A=\dfrac{2}{1.3}-\dfrac{2}{2.4}+\dfrac{2}{3.5}-\dfrac{2}{4.6}+\dfrac{2}{5.7}-\dfrac{2}{6.8}+\dfrac{2}{7.9}-\dfrac{2}{8.10}+\dfrac{2}{9.11}-\dfrac{2}{10.12}\)
\(\Rightarrow A=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)-\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+\dfrac{2}{10.12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\)
\(\Rightarrow A=1-\dfrac{1}{11}-\dfrac{1}{2}+\dfrac{1}{12}\)
\(\Rightarrow A=\dfrac{9}{22}+\dfrac{1}{12}\)
\(\Rightarrow A=\dfrac{65}{132}\)
Mà \(\dfrac{65}{132}< 1\) \(\Rightarrow A< 1\)
Vậy \(A< 1\)
a) (\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)) . x =\(\frac{1}{3}\)
b) (\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)) : x = \(\frac{2}{3}\)
c) (\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)) . x = \(\frac{2}{3}\)
Mik đang cần gấp
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
b)( \(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{9}-\frac{2}{11}_{ }\)):x =\(\frac{2}{3}\)
Giống câu a