Chứng minh rằng:A=3x+1+3x+2+...+3x+100 chia hết cho 120
cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
Lời giải:
a.
\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)
$\Leftrightarrow 15x^2+10y\vdots 11$
$\Leftrightarrow 15x^2+10y-22y\vdots 11$
$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)
b.
$2x+3y^2\vdots 7$
$\Leftrightarrow 3(2x+3y^2)\vdots 7$
$\Leftrightarrow 6x+9y^2\vdots 7$
$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$
$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)
Chứng minh rằng : 3x+1 + 3x+2 +3x+3 +...+3x+11+ 3x+12 chia hết cho 39 ,x là số tự nhiên
\(=3^{x+1}\left(1+3+3^2\right)+...+3^{x+10}\left(1+3+3^2\right)=\)
\(=3^x.3.13+...+3^{x+9}.3.13=\)
\(39\left(3^x+...+3^{x+9}\right)⋮39\)
tìm x, biết:
a) (2x-1) mũ 20= (2x-1)mũ 18
b) ( 2x-3) mũ 2= 9
c) (x-5) mũ 2 = (1-3x)mũ 2
bài 2: Chứng minh rằng:
a) 15 mũ 20 - 15 mũ 19 chia hết cho 14
b) 3 mũ 20 + 3 mũ 21+ 3 mũ 22 chia hết cho 13
c) 3+ 3 mũ 2 + 3 mũ 3+.......+ 3 mũ 2007 chia hết cho 13
7 mũ 1+ 7 mũ 2+ 7 mũ 3+.........+ 7 mũ 4n chia hết cho 400
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
3x-1. 7 + 3x-1 . 2 = 9
P = 2+22+23+ ... +265 + 266 . Chứng minh P chia hết cho 7 ? Vì sao .
\(3^{x-1}.7+3^{x-1}.2=9\\ 3^{x-1}.\left(7+2\right)=9\\ 3^{x-1}.9=9\\ 3^{x-1}=\dfrac{9}{9}=1\\ Mà:3^0=1\\ Nên:x-1=0\\ Vậy:x=0+1=1\\ ---\\ P=2+2^2+2^3+...+2^{65}+2^{66}=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\\ =2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{64}\left(1+2+2^2\right)\\ =2.7+2^4.7+...+2^{64}.7\\ =\left(2+2^4+....+2^{64}\right).7⋮7\left(đpcm\right)\)
+)
\(3^{x-1}.7+3^{x-1}.2=9\)
\(3^{x-1}.\left(7+2\right)=9\)
\(3^{x-1}.9=9\)
\(3^{x-1}=9:9\)
\(3^{x-1}=1\)
⇔\(3^{x-1}=3^0\)
⇒\(x-1=0\)
\(x=0+1\)
\(x=1\)
Vậy \(x=1\)
+)
\(2+2^2+2^3+...+2^{65}+2^{66}\)
Vì \(2+2^2+2^3=14\) mà \(14\)⋮\(7\)
⇒Ta nhóm 3 số với nhau
Ta có:
\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\)
\(\left(2+2^2+2^3\right)+2^3.\left(2+2^2+2^3\right)+...+2^{63}.\left(2+2^2+2^3\right)\)
\(14.1+14.2^3+...+14.2^{63}\)
\(14.\left(1+2^3+...+2^{63}\right)\)
Do \(14\)⋮\(7\) nên \(P=14.\left(2+2^3+...+2^{63}\right)\)⋮\(7\)
Xin tick
Bài 1: Thực hiện phép tính: 100-[120-6.(5-3)^2]
Bài 2: Tìm số nguyên x biết: 3x+13=-2
Bài 3: Cho B: 3^1+3^2+3^3+...+3^100
Chứng minh rằng B chia hết cho 2
GIÚP MIK GẤP Ạ
ai nhanh mà đúng mk tick ạ
bài 1: = 100-( 120 - 6.4)
= 100 - (120-24)
= 100 - 96
= 4
bài 2: 3x+13=-2
3x= (-2)-13
3x= -15
x= -15 : 3
x= -5
bài 3: ko bt :)))
đúng :))
oke thanks bro:>
mà có đúng khơm zị.-.
Cho x,y là 2 số nguyên.Chứng tỏ rằng:
a)Cho A=(2x+5y)(11x+8y) chia hết cho 13 chứng tỏ A chia hết cho 169
b) Nếu 4x+7y chia hết cho 23 thì 11x+2y chia hết cho 23
c) Nếu 3x+12y chia hết cho 13 thì 10x+y chia hết cho 13
tính
S=(1-1\2^2)(1-1\3^2)........(1-1\100^2)
cho x,ylaf các số nguyên thỏa mãn 3x-5y chia hết cho 23 . chứng minh rằng 5x-16y cũng chia hết cho 23
1. \(S=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(S=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)
\(S=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}\)
\(S=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)
\(S=\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)
\(S=\frac{1}{100}.\frac{101}{2}\)
\(S=\frac{101}{200}\)
2.
Vì 3x - 5y \(⋮\)23
\(\Rightarrow\)6 . ( 3x - 5y ) \(⋮\)23
Ta có : 6 . ( 3x - 5y ) + ( 5x - 16y )
\(\Leftrightarrow\)( 18x - 30y ) + ( 5x - 16y )
\(\Leftrightarrow\)23x - 46y
\(\Leftrightarrow\)23 . ( x - 2y ) \(⋮\)23
Vì 18x - 30y \(⋮\)23 mà ( 5 ; 23 ) = 1
\(\Rightarrow\)5x - 16y \(⋮\)23
Cho (3x + 5y)(x + 4y) chia hết cho 7. Chứng minh (3x + 5y)(x + 4y) chia hết cho 49
toán này chắc toán lớp 4 hoặc lớp 5 rồi
bạn hk lớp mấy
Chứng minh rằng:
a)3x^2-x+1>0 với mọi xϵR
b)2x-4x^2-2<0 với mọi xϵR