Tìm các giá trị để biểu thức M=\(\frac{6x+7}{3x+1}\)có giá trị nguyên
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Tìm giá trị nguyên của x để biểu thức sau nhận giá trị nguyên
\(\frac{3x^2+6x+5}{x+1}\)
ta có \(\frac{3x^2+6x+5}{x+1}=\frac{3\left(x+1\right)^2+2}{x+1}=3\left(x+1\right)+\frac{2}{x+1}\)
do x nguyên nên 3(x+1) là số nguyên
do đó \(\frac{2}{x+1}\) phải là số nguyên hay x+1 là ước của 2
\(\Rightarrow\orbr{\begin{cases}x+1=\pm1\\x+1=\pm2\end{cases}\Rightarrow x\in\left\{-3,-2,0,1\right\}}\)
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên:
M=\(\frac{2x+5}{x+1}\)
N=\(\frac{7-3x}{x+2}\)
P=\(\frac{5x+7}{2x+1}\)
a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)
Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)
Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)
b) Tương tự
Cho biểu thức: \(A=\frac{3x^2-11x+6}{x^2-6x+9}\)
a, Tìm giá trị của x để A=0
b, Tìm giá trị nguyên của x để A có giá trị nguyên
ĐKXĐ : x2 - 6x + 9 \(\ne\)0
<=> x \(\ne\)3
a) A = 0
=> 3x2 - 11x + 6 = 0
<=> 3x2 - 9x - 2x + 6 = 0
<=> 3x(x - 3) - 2(x - 3) = 0
<=> (3x - 2)(x - 3) = 0
<=> \(\orbr{\begin{cases}x=\frac{2}{3}\left(tm\right)\\x=3\left(\text{loại}\right)\end{cases}}\)
Vậy x = 2/3 thì A = 0
b) Ta có A = \(\frac{3x^2-11x+6}{x^2-6x+9}=3+\frac{7x-21}{x^2-6x+9}=3+\frac{7}{x-3}\)
Để : A \(\inℤ\Leftrightarrow7⋮x-3\Leftrightarrow x-3\inƯ\left(7\right)\Leftrightarrow x-3\in\left\{1;7;-1;-7\right\}\)
Lập bảng xét các trường hợp
x - 3 | 1 | 7 | -1 | -7 |
x | 4(tm) | 10(tm) | 2(tm) | -4(tm) |
Vậy \(x\in\left\{4;10;2;-4\right\}\)thì A \(\inℤ\)
Tìm x để biểu thức sau có giá trị nguyên
\(\frac{6x-5}{3x-1}\)
Ta có : \(\frac{6x-5}{3x-1}=\frac{6x-2-3}{3x-1}=\frac{6x-2}{3x-1}-\frac{3}{3x-1}=\frac{2\left(3x-1\right)}{3x-1}-\frac{3}{3x-1}\) \(=3-\frac{3}{3x-1}\)
Để : \(\frac{6x-5}{3x-1}\in Z\) thì \(\frac{3}{3x-1}\in Z\)
\(\Rightarrow\) 3 chia hết cho 3x - 1
=> 3x - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
3x - 1 | -3 | -1 | 1 | 3 |
3x | -2 | 0 | 2 | 4 |
x | 0 |
Để \(\frac{6x-5}{3x-1}\)là số nguyên thì 6x - 5 \(⋮\)3x - 1
Ta có :
6x - 5 \(⋮\)3x - 1
6x - 1 - 4 \(⋮\)3x - 1
Mà 6x - 1 \(⋮\)3x - 1
=> 4 \(⋮\)3x - 1
Sau đó tính 3x - 1 là được
Tìm x để biểu thức sau có giá trị nguyên:
\(\frac{6x-5}{3x-1}\)
Ta có : \(\frac{6x-5}{3x-1}=\frac{2\left(3x-1\right)-3}{3x-1}=2-\) \(\frac{3}{3x-1}\) có giá trị là 1 số nguyên
\(\Rightarrow3⋮3x-1\Rightarrow\left(3x-1\right)\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-\frac{2}{3};0;\frac{2}{3};\frac{4}{3}\right\}\)
Kết bn với Chiinh đi ạk
Để biểu thức có giá trị nguyên thì \(\frac{6x-5}{3x-1}\ge0\)
\(\Leftrightarrow6x-5\ge0\)
\(\Leftrightarrow6x\ge5\)
\(\Leftrightarrow x\ge\frac{5}{6}\)
Vậy khi \(x\ge\frac{5}{6}\)thì biểu thức đạt giá trị nguyên.
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên:
a, \(M=\frac{2x+5}{x+1}\)
b, \(N=\frac{7-3x}{x+2}\)
c, \(P=\frac{5x+7}{2x+1}\)
a) m = 2x +5 / x +1
= 2(x+1) + 3 / x+1
= 2 + 3/ x+ 1
Để M có giá trị nguyên thì 3 phải chia hết cho x + 1
=> x+1 = 3
=> x = 2
Vậy x = 2 thì M có giá trị nguyên
Cho biểu thức: 2(1-9x2)/3x2+6x : 2-6x/3x
a, Rút gọn M.
b, Tìm các giá trị nguyên của x để M có giá trị nguyên.
c.tìm các giá trị nguyên của x =2 ,x=1
các bạn giúp vơi mình đang thi
a: \(M=\dfrac{2\left(1-3x\right)\left(1+3x\right)}{3x\left(x+2\right)}\cdot\dfrac{3x}{2\left(1-3x\right)}=\dfrac{3x+1}{x+2}\)
Cho biểu thức: \(P=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}+\frac{3x+1-x^2}{3x}\)
1) rút gọn biểu thức P
2) tìm giá trị của P biết /x/=1/3
3) tìm các giá trị nguyên của x để biểu thức A có giá trị là số nguyên