Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
taquangduy
Xem chi tiết
Le Thi Khanh Huyen
27 tháng 5 2015 lúc 10:54

doi ?

Nguyễn Tuấn Tài
27 tháng 5 2015 lúc 10:54

Để chứng tỏ a-b và -a + b là hai số đối nhau ta cần chứng minh tổng của chúng bằng 0 

Xét tổng : ( a-b ) + ( -a  + b  ) = [ a +( -a )] + [ b + (-b )] => 0 + 0 = 0

vậy a-b và -a + b là hai số đói nhau

Lam Thanh Chuyen
6 tháng 2 2017 lúc 9:01

toán như thế mà còn lắm chuyện

em_là_anh
Xem chi tiết
Nguyễn Thanh Tùng
9 tháng 2 2017 lúc 18:43

b,Ta có 

-(a-b+c) = -a+b-c ( ĐPCM)

Nguyễn Đức Anh
11 tháng 2 2017 lúc 19:41

a) Nếu a - b và -a + b là 2số đối nhau thì tổng của bằng 0

Ta có: a - b + -a + b

=> (a - a) +(b - b )

=> 0

Vậy đó là 2 số đối nhau

b) -(a -b +c) = -a +b -c (đpcm) 

Lê Thị Hà Linh
Xem chi tiết
Đặng Nguyễn Xuân Ngân
Xem chi tiết
Oo Bản tình ca ác quỷ oO
12 tháng 6 2016 lúc 21:37

ta lấy vế trái nhân vs -1

ta có: \(\frac{a}{b}=\frac{a.\left(-1\right)}{b.\left(-1\right)}=\frac{-a}{-b}\)

vậy a/b = -a/-b

ta lại có: \(\frac{-a}{b}=\frac{-a.\left(-1\right)}{b.\left(-1\right)}=\frac{a}{-b}\)

vậy -a/b = a/-b

t i c k nhé!! 5756756845745756

Phan Quang An
12 tháng 6 2016 lúc 21:33

Vế trái nhân với -1 sẽ ra

Lê Quốc Vương
12 tháng 6 2016 lúc 21:36

???????????????????????????????????????????????

koyokohoho
Xem chi tiết
Thanh Tùng DZ
2 tháng 6 2019 lúc 11:53

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

T.Ps
2 tháng 6 2019 lúc 11:55

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#

Thanh Tùng DZ
2 tháng 6 2019 lúc 11:56

Ta có :

\(2^{2n+1}=\left(3-1\right)^{2n+1}=BS3-1=3k+2\)

do đó :

\(A=2^{3k+2}+3=4.\left(2^3\right)^k+3=4\left(7+1\right)^k+3=BS7+7=BS7\)

Mà A > 7, vậy A là hợp số

Quang Ánh
Xem chi tiết
akmu
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 10 2016 lúc 13:14

Ta có :

\(A=a^3b-ab^3\)

\(=ab\left(a^2-b^2\right)\)

\(=ab\left(a-b\right)\left(a+b\right)\)

Nếu a hoặc b chẵn thì tích A chia hết cho 2.

Nếu cả a và b đều lẻ thì tổng / hiệu chúng chia hết cho 2\(\Rightarrow A\) chia hết cho 2

      2. Nếu a hoặc b là bội của 3 thì A chia hết cho 3

Nếu cả a và b đều không chia hết cho 3 thì chia cho 3 có thể dư 1 hoặc 2.

Nếu a và b chia cho 3 cùng dư 1 hoặc 2 thì hiệu chúng chia hết cho 3, còn khác số dư thì chỉ có thể : 1 số chia 3 dư 1 và 1 số chia 3 dư 2, tổng chia 3 dư 3, tức không dư.

Bởi vậy A luôn chia hết cho 3.

Mà \(ƯCLN\left(2;3\right)=1\)

\(\Rightarrow A\) chia hết cho 2 . 3 = 6

Vậy ...

Ben 10
24 tháng 8 2017 lúc 10:52

dễ thôi

Cho đường tròn (O;R) đường kính AB,dây CD vuông góc với AB tại H,đường thẳng d tiếp xúc với đường tròn tại A,CO DO cắt đường thẳng d lần lượt tại M N,CM DN cắt đường tròn (O) lần lượt tại E F,Chứng minh tứ giác MNEF nội tiếp,Chứng minh ME.MC = NF.ND,Tìm vị trí của H để tứ giác AEOF là hình thoi,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

Ben 10
24 tháng 8 2017 lúc 10:53

dễ thôi

Cho đường tròn (O;R) đường kính AB,dây CD vuông góc với AB tại H,đường thẳng d tiếp xúc với đường tròn tại A,CO DO cắt đường thẳng d lần lượt tại M N,CM DN cắt đường tròn (O) lần lượt tại E F,Chứng minh tứ giác MNEF nội tiếp,Chứng minh ME.MC = NF.ND,Tìm vị trí của H để tứ giác AEOF là hình thoi,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

Sakura Linh
Xem chi tiết
Isolde Moria
5 tháng 9 2016 lúc 10:17

Ta có

\(a+b=0\)

\(\Rightarrow a=-b\)

Mặt khác

\(a\ge0\)

\(\Rightarrow b\le0\)

Vạy tồn tại số nguyên b để b+a=0 ( a là số tự nhiên ) với b = - a 

Hoàng Lê Bảo Ngọc
5 tháng 9 2016 lúc 10:20

Giả sử với mọi số tự nhiên a không tồn số nguyên b sao cho a+b = 0

Do đó, ta chỉ ra một trường hợp để chứng minh điều giả sử là sai.

Vì b là số nguyên nên chọn b = -a => b là số đối của a

Mà tổng của a và số đối của nó bằng 0 , tức a + b = 0 (vô lí)

Vậy điều giả sử sai . Ta có điều phải chứng minh.

Bùi Đức Lộc
5 tháng 9 2016 lúc 10:38

Ta có:

a + b = 0

=> a = -b

Mặt khác

a > 0

=> b < 0

Vậy tồn tại số nguyên b để b + a = 0 ( a là số tự nhiên ) với b = -a

Phạm Lan Chi
Xem chi tiết