chứng tỏ rằng trong 1 phép trừ, tổng của số bị trừ,số trừ, và hiệu bao giờ cũng chia hết cho 2
Chứng tỏ rằng trong 1 phép trừ ,tổng của số bị trừ,số trừ và hiệu bao giờ cũng chia hết cho 2
tui nghĩ ra rùi thôi cảm ơn mọi người;
gọi a là số bị trừ ; b là số trừ và c là hiệu của a - b
Ta co ; c = a - b
=>a + b+ c=a+b+a-b=2a chia hết cho 2
a - b = c
=> c + a = b
=> Ta có ví dụ : 5 - 3 = 2 ( 5 + 3 + 2 = 10 )
=> Vì trong phép tính nếu số bị trừ,số trừ và hiệu luôn chia hết cho 2.
Trường Hợp 1 : Số bị trừ,số trừ ra kết quả là số lẻ thì Số bị trừ có thể là số chẵn hoặc lẻ
Trường Hợp 2 : Ra kết quả là số chẵn vì : a - b = c ( c + a + b )
VD cụ thể hiệu số chẵn : 10 - 8 = 2 ( 2 + 8 + 10 = 20 )
Số lẻ : 11 - 7 = 4 ( 11 + 7 + 4 = 22 )
=> a - b =c ( c + a + b chia hết cho 2 )
Chứng tỏ rằng trong một phép trừ , tổng của số bị trừ số trừ và hiệu bao giờ cũng chia hết cho 2
Ta có:
số bị trừ + số trừ + hiệu
= (số trừ + hiệu) + số trừ + hiệu
= 2 x (số trừ + hiệu) chia hết cho 2
Chứng tỏ ...
- Nếu số bị trừ là lẻ, số trừ là chẵn thì hiệu là số lẻ. Tổng của 2 số lẻ với 1 số chẵn là số chẵn, chia hết cho 2.
- Nếu số bị trừ là chẵn, số trừ là lẻ thì hiệu là số lẻ. Tổng của 2 số lẻ với 1 số chẵn là số chẵn, chia hết cho 2.
- Nếu số bị trừ và số trừ cùng chẵn thì hiệu là là số chẵn. Tổng của 3 số chẵn là số chẵn, chia hết cho 2.
- Nếu số bị trừ và số trừ cùng lẻ thì hiệu là là số chẵn. Tổng của 2 số lẻ với 1 số chẵn là số chẵn, chia hết cho 2.
=> điều phải chứng minh
Ta có:
số bị trừ + số trừ + hiệu
= (số trừ + hiệu) + số trừ + hiệu
= 2 x (số trừ + hiệu) chia hết cho 2
Chứng tỏ ...
chứng tỏ rằng Trong một phép trừ, tổng của số bị trừ,số trừ và hiệu bao giờ cũng chia hết cho 2 ?
Ta có
SBT+ST+H=SBT+SBT=2XSBT CHIA HẾT CHO 2
NÊN TỔNG CỦA SBT,ST,H CHIA HẾT CHO 2
Ta có
SBT+ST+H=SBT+SBT=2XSBT CHIA HẾT CHO 2
NÊN TỔNG CỦA SBT,ST,H CHIA HẾT CHO 2
*)Nếu số trừ và số bị trừ cùng là số lẻ hoặc chẵn
=>hiệu là số chẵn
Ta có:số chẵn + số chẵn + số chẵn cho ta số chẵn nên chia hết cho 2
Số lẻ + số lẻ +số chẵn cho ta số chẵn nên chia hết cho 2
*)Nếu số trừ và số bị trừ khác loại(chẵn-lẻ ; lẻ -chẵn)
=>hiệu là số lẻ
Mà Số lẻ + số lẻ +số chẵn cho ta số chẵn nên chia hết cho 2
=>Tổng của số trừ số bị trừ hiệu trong 1 phép trừ luôn chia hết cho 2
SBT - ST = H
SBT = ST + H
SBT + ST + H = SBT + SBT = 2 SBT
Do đó, tổng số bị trừ, số trừ và hiệu chia hết cho 2.
Chứng minh rằng : trong phép trừ , tổng của số bị trừ , số trừ và hiệu bao giờ cũng chia hết cho 2
1 chứng tỏ rằng trong 1 phép tính trừ tổng của số bị trừ và hiệu bao giờ cũng chia hết cho 2
2 hai số không chia hết cho 3 khi chia cho 3 được những số dư khác nhau
a chưng tỏ rằng tổng cùa hai số đó chia hết cho 3
b chứng tỏ rằng hiệu của hai số đó chia hết cho 3
Chứng tỏ rằng trong 1 phép trừ tổng của số bị trừ, số trừ,và hiệu bao giờ cũng chia hết cho 2
GIÚP MK CÁI NHA, GIẢI TỪNG BƯỚC GIÚP MK NHA, MK SẼ K CHO, THANKS
Ta có :
SBC - SC = H
- Nếu số bị trừ là số chẵn :
+ Số trừ là số lẻ : kết quả sẽ ra một số lẻ
Mà : Lẻ + Lẻ + Chẵn = Chẵn ( chia hết cho 2 )
+ Số trừ là số chẵn : kết quả sẽ ra một số chẵn
Mà : Chẵn + Chẵn + Chẵn = Chẵn ( chia hết cho 2 )
- Nếu số bị trừ là số lẻ :
+ Số trừ là số lẻ : kết quả sẽ ra một số chẵn
Mà : Lẻ + Lẻ + Chẵn = Chẵn ( chia hết cho 2 )
+ Số trừ là số chẵn : kết quả sẽ ra một số lẻ
Mà : Lẻ + Chẵn + Lẻ = Chẵn ( chia hết cho 2 )
CMR: Trong một phép trừ, tổng của số bị trừ,số trừ và hiệu bao giờ cũng chia hết cho 2
http://olm.vn/hoi-dap/question/184354.html
Chứng minh rằng:trong 1 phép trừ , tổng của số bị trừ,số trừ và hiệu bao giờ cũng chia hết cho 2 ?
các bạn giúp mình với
Ta có :
Số bị trừ + số trừ + hiệu = số bị trừ + (số trừ + hiệu)
Vì số trừ + hiệu = số bị trừ nên
Số bị trừ + số trừ + hiệu = 2 số bị trừ
Dó đó : 2 số bị trừ chia hết cho 2
hay Số bị trừ + số trừ + hiệu chia hết cho 2
Vậy số bị trừ + số trừ + hiệu chia hết cho 2