Cho A= 1011-1 phần 1012-1 và B= 1010+1 phần 1011+1
Hãy so sánh A và B
Cho A= 1011-1/1012-1 và 1010+1/1011+1. So sánh A và B
Giải:
Ta có: A=1011-1/1012-1
10A=10.(1011-1)/1012-1
10A=1012-10/1012-1
10A=1012-1-9/1012-1
10A=1012-1/1012-1 - 9/1012-1
10A=1-9/1012-1
Tương tự: B=1010+1/1011+1
10B=1+9/1011+1
Vì -9/1012-1 < 9/1011+1 nên 10A < 10B
Vậy A<B
Chúc bạn học tốt!
so sánh : A=1011-1/1012-1 và B=1010+1/1011+1
Giải:
A=10^11-1/10^12-1
10A=10.(10^11-1)/10^12-1
10A=10^12-10/10^12-1
10A=10^12-1-9/10^12-1
10A=10^12-1/10^12-1 + -9/10^12-1
10A=1+ -9/10^12-1
B=10^10+1/10^11+1
10B=10.(10^10+1)/10^11+1
10B=10^11+10/10^11+1
10B=10^11+1+9/10^11+1
10B=10^11+1/10^11+1 + 9/10^11+1
10B=1 + 9/10^11+1
Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B
=>A < B
Chúc bạn học tốt!
So sánh:
A = 1011 - 1/ 1012 - 1 va B = 1010+ 1/ 1011+ 1
\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)
\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)
Ta có :
\(1-A=1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)
\(1-B=1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)
NHận thấy \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow A< B\)
Ta có:
\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)
\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)
Ta lại có:
\(1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)
\(1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)
Vì \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow\dfrac{1010}{1011}< \dfrac{1011}{1012}\Rightarrow A< B\)
So sánh P và Q, biết: \(P=\frac{1010}{1011}+\frac{1011}{1012}+\frac{1012}{1013}\) và \(Q=\frac{1010+1011+1012}{1011+1012+1013}\)
Ta có : Q=\(\frac{1010+1011+1012}{1011+1012+1013}\)=\(\frac{1010}{1011+1012+1013}+\frac{1011}{1011+1012+1013}+\frac{1012}{1011+1012+1013}\)
Vì1010/1011>1010/1011+1012+1013
1011/1012>1011/1011+1012+1013
1012/1013>1012/1011+1012+1013
=>P>Q
So sánh A và B biết :
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(B=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}\)
Ta có:
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-1-\frac{1}{2}-...-\frac{1}{1009}\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
Nhanh lên giúp mình với !
Ngày mai mình phải nộp rồi.
Làm nhanh nhất, đúng nhất, rõ ràng mình k cho
cho A=1/1.2+1/3.4+1/5.6+....+1/2021.2022 và B=1011+1010/1012+1009/1013+1008/1014+...+2/2020+1/2021 Chứng minh rằng : B/A là số nguyên
so sánh 1 x 3 x 5 x ....x 2017 và 1010/2 x 1011/2 x 1012/2 x .... x 2018/2
Cho A=1-1/2+1/3-1/4+........+1/2017-1/2018 và
B=1/1010+1/1011+1/1012+.......+1/2017+1/2018
Tính A/B^2018
ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\)
\(\Rightarrow A=B\left(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)\)
\(\Rightarrow\frac{A}{B^{2018}}=\frac{A}{A.B^{2017}}=\frac{1}{B^{2017}}\)
=> \(\frac{A}{B^{2018}}=\frac{1}{\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)^{2017}}\)
so sánh 1 x 3 x 5 x ....x 2017 và 1010/2 x 1011/2 x 1012/2 x .... x 2018/2
mik cần gấp
thích vênh thì tự đi mà làm, nhóc con đấy thì sao ạ
Cho A=1/1.2+1/3.4+....+1/2017.2018
B=1/1010+1/1011+......+1/2018
So sánh A và B