Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Uyên	Nhi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 2 2021 lúc 6:52

\(A=\frac{x^3-4x^2+4x-10}{x-3}\)( ĐKXĐ : x ≠ 3 )

\(=\frac{x^3-3x^2-x^2+3x+x-3-7}{x-3}\)

\(=\frac{x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-7}{x-3}\)

\(=\frac{\left(x-3\right)\left(x^2-x+1\right)-7}{x-3}\)

\(=\frac{\left(x-3\right)\left(x^2-x+1\right)}{x-3}-\frac{7}{x-3}\)

\(=\left(x^2-x+1\right)-\frac{7}{x-3}\)

Vì x ∈ Z nên ( x2 - x + 1 ) ∈ Z

nên để A ∈ Z thì \(\frac{7}{x-3}\)∈ Z

hay ( x - 3 ) ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

Các giá trị tm ĐKXĐ

Vậy x ∈ { ±4 ; 2 ; 10 } thì A ∈ Z

Khách vãng lai đã xóa
Nobi Nobita
2 tháng 2 2021 lúc 8:29

\(ĐKXĐ:x\ne3\)

\(A=\frac{x^3-4x^2+4x-10}{x-3}=\frac{x^3-3x^2-x^2+3x+x-3-7}{x-3}\)

\(=\frac{x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-7}{x-3}\)

\(=\frac{\left(x-3\right)\left(x^2-x+1\right)-7}{x-3}=\left(x^2-x+1\right)-\frac{7}{x-3}\)

Vì \(x\inℤ\)\(\Rightarrow x^2-x+1\inℤ\)

\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{7}{x-3}\inℤ\)\(\Rightarrow7⋮x-3\)

\(\Rightarrow x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Leftrightarrow x\in\left\{-4;2;4;10\right\}\)( thỏa mãn ĐKXĐ )

Vậy \(x\in\left\{-4;2;4;10\right\}\)

Khách vãng lai đã xóa
Ngo khanh huyen
Xem chi tiết

Trang
Xem chi tiết
Trang
15 tháng 4 2019 lúc 16:17

Tìm số nguyên x để phân số \(x = \frac{x^2+3x-3}{x-5}\) có giá trị nguyên.

Các bạn làm nhanh giúp mk nha!!!

Minh Gaming
Xem chi tiết
ngonhuminh
24 tháng 10 2016 lúc 10:34

x-3=k^2

x=k^2+3

x+1-k=t^2

k^2+4-k=t^2

(2k-1)^2+15=4t^2

(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5

---giải phương trình nghiệm nguyên với k,t---

TH1. [2(k-t)-1][2(k+t)-1]=-1.15

2(k-t)-1=-1=> k=t

4t-1=15=>t=4    nghiệm (-4) loại luôn

với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận

TH2. mà có bắt tìm hết đâu

x=19 ok rồi

ngonhuminh
24 tháng 10 2016 lúc 10:37

ô hay vừa giải xong mà

x=k^2+3

với k là nghiệm nguyên của phương trình

k^2-k+4=t^2

bắt tìm hết hạy chỉ một

x=19 là một nghiệm 

Lisaki Nene
Xem chi tiết
Bùi Mai Anh
Xem chi tiết
Phương Chị
Xem chi tiết
Tran Le Khanh Linh
7 tháng 3 2020 lúc 20:44

a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)

Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)

Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)

Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0

b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)

Để A là số nguyên thì 6x-1 chia hết cho 3x+2

\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)

Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2

Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}

Ta có bảng

3x+2-5-115
3x-7-3-13
x\(\frac{-7}{3}\)-1\(\frac{-1}{3}\)1

Vậy x={-1;1} thì A nguyên

Khách vãng lai đã xóa
sOKn0340
Xem chi tiết
Edogawa Conan
13 tháng 12 2019 lúc 16:12

a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)

Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)

Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)

Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3

Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)

=> x + 2 = 3(x - 3)

=> x + 2 = 3x - 9

=> x - 3x = -9 - 2

=> -2x = -11

=> x = 11/2 (tm)

Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)

c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3

Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)

Để M \(\in\)Z <=> 3 \(⋮\)x - 3

=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng:

x - 3 1 -1 3 -3
  x 4 2 (ktm) 6 0

Vậy ...

Khách vãng lai đã xóa
Trần Huỳnh Cẩm Hân
Xem chi tiết
Nguyễn Như Nam
30 tháng 11 2016 lúc 20:12

Ta có:

\(\frac{2x^2-3x+1}{x-1}=\frac{\left(2x^2-2x\right)-\left(x-1\right)}{x-1}=\frac{2x\left(x-1\right)-\left(x-1\right)}{x-1}=\frac{\left(2x-1\right)\left(x-1\right)}{x-1}=2x-1\)

=> Với mọi số nguyên \(x\) thì \(2x-1\) là số nguyên