Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tài Thị Hi
Xem chi tiết
Anh đẹp trai
Xem chi tiết
 Mashiro Shiina
9 tháng 2 2018 lúc 22:24

Đặt: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=t\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=\dfrac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+...+a_{2009}}=t\)

Ta có: \(\left\{{}\begin{matrix}\left(\dfrac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}=t^{2008}\\\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}...\dfrac{a_{2008}}{a_{2009}}=t^{2008}=\dfrac{a_1}{a_{2009}}\end{matrix}\right.\Leftrightarrow\left(đpcm\right)\)

Nguyễn Thúy Quỳnh
21 tháng 11 2020 lúc 15:12

ai giả đi

Khách vãng lai đã xóa
Nguyễn Trường Thọ
Xem chi tiết
Nguyen Xuan Son Long
Xem chi tiết
Nguyễn Amy
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2022 lúc 23:19

a: Đặt a/b=b/c=c/d=k

=>a=bk; b=ck; c=dk

=>a=bk; b=dk^2; c=dk

=>a=dk^3; b=dk^2; c=dk

\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{dk^3+dk^2+dk}{dk^2+dk+d}\right)^3=k^3\)

\(\dfrac{a}{d}=\dfrac{dk^3}{d}=k^3\)

=>\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)

c: Đặt a/2003=b/2004=c/2005=k

=>a=2003k; b=2004k; c=2005k

4(a-b)(b-c)=(c-a)^2

=>4(2004k-2003k)(2005k-2004k)=(2005k-2003k)^2

=>4*k*k=(2k)^2(luôn đúng)

=>ĐPCM

Nguyễn Amy
Xem chi tiết
HND_Boy Vip Excaliber
Xem chi tiết
doan trung kien
Xem chi tiết
SKT_ Lạnh _ Lùng
24 tháng 4 2016 lúc 17:42

sai đề : phải là: a1.a14+a14.a12<a1.a12  nếu thế thì giải như sau

Ta có : a1 + (a2 + a3 + a4) + … + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 ; a1 > 0 ; a2 + a3 + a4 > 0 ; … ; a11 + a12 + a13 > 0 ; a15 + a16 + a17 > 0 ; a18 + a19 + a20 > 0 => a20 < 0.

Cũng như vậy : (a1 + a2 + a3) + … + (a10 + a11 + a12) + (a13 + a14) + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 => a13 + a14 < 0.

Mặt khác, a12 + a13 + a14 > 0 => a12 > 0.

Từ các điều kiện a1 > 0 ; a12 > 0 ; a14 < 0 => a1.a14 + a14a12 < a1.a12 [dpcm]

Trịnh Ngọc Quý
Xem chi tiết