Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ánh tuyết nguyễn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 12 2022 lúc 21:44

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

Hoàng Đức Lương
Xem chi tiết
Hoàng Đức Lương
17 tháng 12 2023 lúc 16:08

giúp tui với

Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 21:12

a: Gọi số tự nhiên lập được là \(\overline{abc}\)

a có 5 cách chọn

b có 5 cách chọn

c có 5 cách chọn

Do đó: Có \(5\cdot5\cdot5=125\left(số\right)\) có 3 chữ số lập được từ các chữ số của tập hợp A

b: Gọi số tự nhiên cần tìm có dạng là \(\overline{abc}\)

a có 5 cách chọn

b có 4 cách chọn

c có 3 cách chọn

Do đó: Có 5*4*3=60 số có 3 chữ số khác nhau lập được từ tập hợp A

Lâm Ánh Yên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 4 2019 lúc 5:19

Đáp án B

Phương pháp: Xét từng trường hợp a = 3; b = 3; c = 3 rồi cộng các kết quả ta được số các số cần tìm.

Cách giải: Gọi số có ba chữ số là a b c ¯ .

- TH1: a = 3.

Có 4 cách chọn b và 3 cách chọn c nên có 4.3 = 12 số.

- TH2: b = 3

Có 4 cách chọn a và 3 cách chọn c nên có 4.3 = 12 số.

- TH3: c = 3.

Có 4 cách chọn a và 3 cách chọn b nên có 4.3 = 12 số.

Vậy có tất cả 12 + 12 + 12 = 36 số.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 11 2019 lúc 15:50

Đáp án C.

Hướng dẫn giải: Gọi số cần tìm có dạng  

Chọn : có cách

Vậy có số.

Hà Mai Khanh
Xem chi tiết
Thảo Phương
6 tháng 1 2023 lúc 8:09

Gọi số tự nhiên gồm 4 chữ số là: abcd

Trường hợp 1: d=0 (1 cách)

a : 6 cách ( #0);         b: 5 cách;     c:4 cách => 120 cách

TH2: d#0 ( nhận 2 4 6 => 1 cách)

a: 5 cách (#0; #d); b : 4 cách; c: 3 cách => 60 cách

=> TH1 + TH2 = 200 cách

Thảo Phương
6 tháng 1 2023 lúc 8:12

ý lộn TH2: b: 5 cách(#a; #d); c: 4 cách => 100 cách

=> Tổng cộng 220 cách

Đào Anh Thư ^_~
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 13:05

a: \(\overline{abc}\)

a có 3 cáhc

b có 4 cáhc

c có 4 cách

=>Có 3*4*4=48 cách

b: \(\overline{abcd}\)

a có 3 cách

b có 3 cách

c có 2 cách

d có 1 cách

=>Có 3*3*2=18 cách

c: \(\overline{abc}\)

c có 1 cách

a có 3 cách

b có 4 cách

=>Có 1*3*4=12 cách

d: \(\overline{abcd}\)

TH1: d=0

=>Có 3*4*4=48 cách

TH2: d<>0

d có 2 cách

a có 3 cách

b có 4 cách

c có 4 cách

=>Có 4*4*3*2=16*6=96 cách

=>Có 144 cách

Ngọc Nhã Uyên Hạ
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 7 2021 lúc 9:06

a. Gọi số đó là \(\overline{ab}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)

Theo quy tắc nhân ta có: \(5.5=25\) số

b. Gọi số đó là \(\overline{abc}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)

Có: \(5.5.4=100\) số

c. Gọi số đó là \(\overline{abcd}\)

Do số chẵn nên d chẵn

- TH1: \(d=0\) (1 cách chọn d)

a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn 

\(\Rightarrow1.5.4.3=60\) số

- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn

d.

Gọi số đó là \(\overline{abcde}\)

Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)

a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách

\(\Rightarrow3.4.4.3.2=288\) số

Trương Mỹ Kim
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 20:51

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

\(\Rightarrow\) d có 5 cách chọn (từ 1;3;5;7;9)

a có 8 cách chọn (khác 0 và d)

b có 8 cách chọn (khác a và d)

c có 7 cách chọn (khác a;b;c)

\(\Rightarrow\) có \(5.8.8.7=2240\) số

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2017 lúc 13:09

Đáp án D

Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.

Cách giải: Gọi số đó là  a b c d e

- TH1: a = 1

+ b có 7 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 7.6.5.4 = 840 số

- TH2: b = 1

+ a ≠ b ,   a   ≠ 0 , nên có 6 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 6.6.5.4 = 720 số.

- TH3: c = 1.

+ a ≠ c ,   a ≠ 0 , nên có 6 cách chọn.

+ b có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có 6.6.5.4 = 720 số.

Vậy có tất cả 840 + 720 + 720 = 2280 số.