chứng tỏ rằng ps 5n+3/3n+2
là ps tối giản với n thuộc N
a) với a là số nguyên nào thì ps a/74 là tối giản
b) với b là số nguyên nào thì ps b/225 là tối giản
c) chứng tỏ rằng 3n/3n+1 ( n thuộc N ) là ps tối giản
Chứng tỏ rằng 3n/3n+1 . n thuộc N. là ps tối giản
CHỨNG TỎ RẰNG CÁC PS SAU TỐI GIẢN:
a)A=3n-1/5n-2
b)B=2n+3/2n-1
a. Gọi d là ƯCLN của \(\frac{3n-1}{5n-2}\) , ta có :
\(\left(5n-2\right)-\left(3n-1\right)⋮d\)
\(\Rightarrow3\left(5n-2\right)-5\left(3n-1\right)⋮d\)
\(\Rightarrow15n-6-15n-5⋮d\)
\(\Rightarrow1⋮d\)
Vậy A tối giản với mọi n
b làm tương tự
a) Gọi ƯCLN(3n - 1;5n - 2) = d
=> \(\hept{\begin{cases}3n-1⋮d\\5n-2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(3n-1\right)⋮d\\3\left(5n-2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}15n-5⋮d\\15n-6⋮d\end{cases}}\Rightarrow\left(15n-5\right)-\left(15n-6\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> 3n - 1 ; 5n - 2 là 2 số nguyên tố cùng nhau
=> \(\frac{3n-1}{5n-2}\)là phân số tối giản
b) Gọi ƯCLN(2n + 3 ; 2n - 1) = d
=> \(\hept{\begin{cases}2n+3⋮d\\2n-1⋮d\end{cases}}\Rightarrow2n+3-\left(2n-1\right)⋮d\Rightarrow4⋮d\Rightarrow d\inƯ\left(4\right)\Rightarrow d\in\left\{1;2;4\right\}\)
Vì 2n + 3 ; 2n - 1 là số lẻ với mọi \(n\inℕ^∗\)
=> 2n + 3 ; 2n - 1 không chia hết cho 2 ; 4
=> d = 1
=> 2n + 3 ; 2n - 1 là 2 số nguyên tố cùng nhau
=> B là phân số tối giản
chứng tỏ rằng nếu P/s 7n2+1/6 là số tự nhiên với n thuộc N thì các PS n/2 và n/3 là PS tối giản
Chứng tỏ PS 3n-2 phần n-1 là PS tối giản
Đặt ƯC(3n-2;n-1)=d
\(\Rightarrow\left\{{}\begin{matrix}3n-2⋮d\\n-1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n-2⋮d\\3n-3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n-2\right)-\left(3n-3\right)⋮d\)
\(\Leftrightarrow3n-2-3n+3⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)
\(\Rightarrow\frac{3n-2}{n-1}\) tối giản.
Vậy:......................(đpcm)
Gọi d là UCLN \(\left(3n-2;n-1\right)\)
\(\Rightarrow\left(3n-2\right)⋮d\) và \(\left(n-1\right)⋮d\)
\(\Rightarrow\left(3n-2\right)⋮d\) và \(3\left(n-1\right)⋮d\)
\(\Rightarrow3n-2⋮d\) và \(3n-3⋮d\)
\(\Rightarrow3n-2-\left(3n-3\right)⋮d\)
\(\Rightarrow3n-2-3n+3⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số \(\frac{3n-2}{n-1}\) là phân số tối giản
chứng tỏ rằng 3n+2 phần 5n+3 là phân số tối giản [với n thuộc n]
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Chứng tỏ rằng phân số sau tối giản với mọi n thuộc N:5n+3/3n+2
gọi UCLN(5n+3; 3n+2)=d khi đó 5n+3 chia hết cho d suy ra 15n+9 chia hết cho d (1)
3n+2 chia hết cho d nên 15n + 10 cũng chia hết cho d (2) ( dử dụng tính chất a chia hết cho m thì a.n cũng chia hết cho m)
từ 1 và 2 suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d ( tính chất chia hết của 1 tổng- hiệu). vậy d=1
vậy UCLN(5n+3; 3n+2)=1 hay phân số trên tối giản
lưu ý: để chứng minh 1 phân số tối giản ta chứng minh UCLN của tử và mẫu bằng 1. còn trong tập Z ta cm UCLN = +-1
chứng tỏ rằng ps 2n+1/3n+2 là ps tối giản
Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi n
Gọi \(d\) là \(UCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow6n+4-6n-3⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\rightarrowđpcm\)
chứng to :với mọi SN n,ps 3n-5/3-2n là ps tối giản