3/4=a/128
Tìm x thuộc N biết :
a) 2^x . 4 = 128
b) 2^x = 4 . 128
c) 3^x = 3^3 . 3^5
d) 2^x . ( 2^2 ) mũ 3 = ( 2^3 ) mũ 2
\(a,2^x.4=128\)
\(\Leftrightarrow2^x=128:4\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b,2^x=4.128\)
\(\Leftrightarrow2^x=2^2.2^7\)
\(\Leftrightarrow2^x=2^9\)
\(\Rightarrow x=9\)
\(c,3^x=3^3.3^5\)
\(\Leftrightarrow3^x=3^8\)
\(\Rightarrow x=8\)
\(d,2^x.\left(2^2\right)^3=\left(2^3\right)^2\)
\(\Leftrightarrow2^x.2^6=2^6\)
\(\Leftrightarrow2^x=2^6:2^6\)
\(\Leftrightarrow2^x=1\)
\(\Rightarrow x=0\)
Trả lời:
a, 2x . 4 = 128
=> 2x = 32
=> 2x = 25
=> x = 5
b, 2x = 4.128
=> 2x = 512
=> 2x = 29
=> x = 9
c, 3x = 33 . 35
=> 3x = 38
=> x = 8
d, 2x ( 22 )3 = ( 23 )2
=> 2x . 26 = 26
=> 2x = 1
=> 2x = 20
=> x = 0
3/4 = a/128
a = ...
thu gọn:
a) (2+1)(2^2+1)(2^4+1)..............(2^32+1)-2^64
b) (5+3)(5^2+3^2)(5^4+3^4)...................(5^64+3^64).\(\frac{5^{128}-3^{128}}{2}\)
Tính A=3/2 + 3/4 + 3/8 + 3/16 + 3/32 + 3/64 + 3/128
Ta có :
\(A=\frac{3}{2}+\frac{3}{4}+...+\frac{3}{128}\)
\(2A=3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}\)
\(2A-A=\left(3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}\right)-\left(\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}+\frac{3}{128}\right)\)
\(A=3-\frac{3}{128}\)
\(A=\frac{381}{128}\)
Ủng hộ mk nha !!! ^_^
A=3:(2+4+8+16+32+64+128)
A=3:254
A=\(\frac{3}{254}\)
a 128-3 (X+4)=23
b (12X-64)×8mũ3 =4×8 mũ4
a) 128 - 3 ( x + 4 ) = 23
3 ( x + 4 ) = 128 - 23
3 ( x + 4 ) = 105
x + 4 = 105 : 3
x + 4 = 35
x = 35 - 4
x = 31
Học tốt bạn nhé!!!
Arigatou ^^
b) \(\left(12x-64\right).8^3=4.8^4\)
\(\left(12x-64\right).8^3=32.8^3\)
\(\Rightarrow12x-64=32\)
12x = 32 + 64
12x = 96
x = 96 : 12
x = 8
Cho A= 4 + 2^2 + 2^3 + 2^4 +...+ 2^20. Hỏi A có chia hết cho 128 không?
2A - A= 221chia hết cho 27
suy ra A chia hết cho 128
2A-A=221 chia het cho27,suy ra Achia het cho 128
2A-A=2\(^{21}\)chia hết cho2\(^7\)
=>A chia hết cho 128
a) 128 - 3 .( x + 4 ) = 23
b) [ ( 6x - 39 ) : 7 ] . 4 = 12
a) 128 - 3( x + 4 ) = 23
<=> 3x + 12 = 128 - 23 =105
<=> 3x = 105 - 12 = 93
<=> x = 31
b) [ ( 6x - 39 ) : 7 ] . 4 =12
<=> ( 6x - 39 ) : 7 = 12 / 4 =3
<=> 6x - 39 = 3 . 7 =21
<=> 6x = 21 + 39 = 60
<=> x =10
so sanh :
A = 4*(3^2+1)*(3^4+1)*(3^8+1)*...*(3^64+1)
B=3^128-1
A = 4 + 2^2 +2^3 +2^4 + .......+ 2^20
A có chia hết cho 128 không
A=4+2^2+2^3+.......+2^20 .Hỏi A có chia hết cho 128 không?
A = 4 + 4 + 2^3+.......+2^20
A = 2^3 + 2^3+ 2^4 + 2^5 +.......+2^20
A = 2.2^3 + 2^4 + 2^5 +2^6 + 2^7 + .......+2^20
A = 2^4 + 2^4 + 2^5 + 2^6 + 2^7 + .......+2^20
A= 2.2^4 + 2^5 + 2^6 + 2^7 + .......+2^20
A= 2^5 + 2^5 + 2^6 + 2^7 + .......+2^20
A = 2.2^5 + 2^6 + 2^7 + .......+2^20
A = 2^6 + 2^6 + 2^7 + .......+2^20
A= 2.2^6 + 2^7 + 2^8 + .......+2^20
A = 2^7 + 2^7 + 2^8 +.......+2^20
A = 2^7( 1 + 1+ 2 + ....+ 2^13)
A = 128 (1 + 1+ 2 + ....+ 2^13)
Vậy A chia hết cho 128