tìm các số a,b biết /2a-3b+500/^2021+(5a-6b)^2020=0
Tìm các số a,b biết :|2a-3b+500|^2021+(5a-6b)^2020=0
Ta có \(\hept{\begin{cases}\left|2a-3b+500\right|^{2021}\ge0\forall a;b\\\left(5a-6b\right)^{2020}\ge0\forall a;b\end{cases}}\Rightarrow\left|2a-3b+500\right|^{2021}+\left(5a-6b\right)^{2020}\ge0\forall a;b\)
Dấu "=" xảy ra <=>
\(\hept{\begin{cases}2a-3b=500\\5a-6b=0\end{cases}}\Rightarrow\hept{\begin{cases}4a-6b=1000\\5a-6b=0\end{cases}}\Rightarrow\hept{\begin{cases}a=-1000\\b=-\frac{2500}{3}\end{cases}}\)
Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm
| 2a - 3b + 99 |2021 + ( 5a - 6b)2020 = 0
Lời giải:
Ta thấy:
$|2a-3b+99|^{2021}\geq 0$ với mọi $a,b$ theo tính chất trị tuyệt đối
$(5a-6b)^{2020}\geq 0$ với mọi $a,b$
Do đó để tổng của chúng bằng $0$ thì:
$|2a-3b+99|^{2021}=(5a-6b)^{2020}=0$
$\Leftrightarrow 2a-3b+99=5a-6b=0$
$\Rightarrow a=198; b=165$
| 2a - 3b + 99 |2021 + ( 5a - 6b)2020 = 0
Tính hộ mik
Tìm các số a, b, c biết 2a = 3b, 5b = 7c và 3a – 7b + 5c = -
30.
Tìm các số x, y, z biết x : y : z = 3 : 4 : 5 và 2𝑥^2 + 2𝑦^2 -
3𝑧^2 = -100.
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
\(2a=3b\text{⇒}a=\dfrac{3b}{2}\) , \(5b=7c\text{⇒}c=\dfrac{5c}{7}\)
\(3a-7b+5c\) \(=-30\)
⇔ \(3.\dfrac{3b}{2}-7b+5.\dfrac{5b}{7}=-30\)
⇔\(63b-98b+50b=-420\)
⇔\(b=-28\) ⇒\(\left\{{}\begin{matrix}a=-42\\c=-20\end{matrix}\right.\)
Tìm các số a,b,c biết a+b+c= 130 và 2a=3b=4c
2a=3b=>a/3=b/2=>a/6=b/4 (1)
3b=4c=>b/4=c/3 (2)
từ (1) và (2) => a/6=b/4=c/3
từ đó dùng tính chất dãy tỉ số = nhau là đc nha!
Tìm các cặp số nguyên (a,b) biết:
a.b - 3.a - 3b = 0
Tìm số chưa biết: (5a-45)^2 + (6b-12)^2 + (8c+24)^2 = 0
Ta có: \(\left(5a-45\right)^2\ge0;\left(6b-12\right)^2\ge0;\left(8c+24\right)^2\ge0\)
Mà \(\left(5a-45\right)^2+\left(6b-12\right)^2+\left(8c+24\right)^2=0\)
=> 5a-45=0 và 6b-12=0 và 8c+24=0
=> 5a=45 và 6b=12 và 8c=-24
=> a=9 và b=2 và c=-3.
Tìm các số tự nhiên a,b để:
n = 5a + 6b chia hết cho 3
Lời giải:
Với mọi số tự nhiên $b$ thì $6b=3.2b\vdots 3$ nên để $n=5a+6b\vdots 3$ thì $5a\vdots 3$
Mà $5\not\vdots 3$ nên điều này xảy ra khi $a\vdots 3$
Vậy với mọi số tự nhiên $b$ và mọi số tự nhiên $a$ sao cho $a\vdots 3$ thì $n=5a+6b\vdots 3$
tìm các số tự nhiên a,b biết rằng a,b là các số nguyên tố cùng nhau và 5a+7b/6a+5b=29/28