Cho hình chữ nhật ABCD, AB = 30 cm2, AD =20 cm 2. Trên CD có điểm M là trung điểm. Trên BC có N là trung điểm. AN và AC lần lượt cắt BM tại G và E. Tính diện tích tam giác AEG.
Cho tam giác ABC vuông tại A. AB = 7,5 cm; BC = 12,5 cm.
a) Tính diện tích tam giác ABC.
b) Lấy điểm M trên cạnh AB sao cho AM : MB = 1 : 2. Từ M kẻ đường thẳng song song với BC cắt trung tuyến AF tại E và cắt cạnh AC tại N. Chứng minh E là trung điểm của MN.
c) Gọi G, H lần lượt là trung điểm của MC, BN. Chứng minh EGFH là hình chữ nhật và tính diện tích của nó.
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
Cho hình chữ nhật ABCD, AB = DC = 30 cm, AD = BC = 20 cm, Điểm M là trung điểm của đoạn BC. Điểm N là trung điểm của đoạn DC. Nối A với C, A với M. Nối BN cắt AM tại E, cắt AC tại F. Tính phần diện tích tam giác AEF.
S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD).
Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC.
MH=NI( dt ANC=AMC và chung đáy AC).
S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI).
S(MFC)=S(MFB) (chung chiều cao hạ từ Fxuống BC và đáy MC=MB)
suy ra S(FMC)=1/3S(NBC)=1/3× 150
=50.S(AFM)
=S(ABC)-S(FMC)-S(ABM)
=300-50-150=100
S(BMN)=1/4S(ABN)
Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN.
Suy ra: MK=1/4AG(▲ BMN=1/4▲ABN và chung đáy NB).
S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80
Cho hình chữ nhật ABCD, AB = DC = 30 cm, AD = BC = 20 cm, Điểm M là trung điểm của đoạn BC. Điểm N là trung điểm của đoạn DC. Nối A với C, A với M. Nối BN cắt AM tại E, cắt AC tại F. Tính phần diện tích tam giác AEF.
S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD). Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC. MH=NI( dt ANC=AMC và chung đáy AC). S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI). S(MFC)=S(MFB) (chung chiều cao hạ từ Fxuống BC và đáy MC=MB) suy ra S(FMC)=1/3S(NBC)=1/3× 150 =50.S(AFM) =S(ABC)-S(FMC)-S(ABM) =300-50-150=100 S(BMN)=1/4S(ABN) Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN. Suy ra: MK=1/4AG( tam giác BMN=1/4tam giác ABN và chung đáy NB). S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80
1) Cho hình bình hành ABCD, trên cạnh AB và CD lần lượt lấy M và N sao cho AM=DN. Đừng trung trực của BM lần lượt cắt MN và BC tại E và F.
a)Chứng minh: E và F đối xứng qua AB
b)Chứng minh: MEBF là hình thoi
c)Hình bình hành ABCD cần thêm điều kiện gì để BCNE là hình thang cân
2)Cho hình bình hành ABCD, trên đường chéo AC lấy hai điểm M và N sao cho AM=CN <1/2 AC a)BNDM là hình gì?
b)BM cắt AD tại K. Xác định vị trí của M để K là trung điểm của AD
3)Cho tam giác ABC cân tại A, BM và CN là đường trung tuyến cắt nhau tại G. Gọi E,F lần lượt là trung điểm của BG và CG. Biết: EFMN là hình chữ nhật; AB=25cm; BC=14cm, tính diện tích EFMN?
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
=
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
QM
1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC
2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2
3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM
tóm lị là ABGHMN là sai
Cho hình chữ nhật ABCD có I là trung điểm của CD. E và F nằm trên AB sao cho AE=EF=FB. Gọi H và G lần lượt là giao điểm của IE và IF với AC. Tính diện tích tam giác IHG biết diện tích hình chữ nhật ABCD là 210
Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K Biết CE = 21 cm . tính độ dài đoạn CK và KE .
Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD .
a) Tính diện hình vuông ABCD
b) Tính diện tích hình AECP
c) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau tại I . So sánh diện tích tam giác IPM với diện tích tam giác IDN
Bài 3 : Cho hình thang ABCD có đáy AB bằng 2/3 đáy CD . Trên cạnh BC lấy một điểm E sao cho đoạn BE bằng 2/5 đoạn CE . Biết diện tích tam giác AED là 32 cm2 . Tính diện tích hình thang ABCD .
Bài 4 : Cho tam giác vuông ABC có góc vuông tại A . Cạnh AB dài 3 cm , cạnh AC dài 4 cm , cạnh BC dài 5 cm . Trên cạnh AB lấy điểm M sao cho AM bằng 2 cm , trên cạnh AC lấy điểm N sao cho AN bằng 1 cm , trên cạnh BC lấy điểm E sao cho BE bằng 2,5 cm . Tính diện tích tam giác MNE
bài 1: ta có;CE là trung tuyến của tam giác ABC =>KE=1/3 CE=1/3 x21=7(cm)
CK=2/3 CE=2/3x21=14(cm0
5 người đầu tiên mình sẽ được mình tích
Cho hình chữ nhật ABCD có diện tích 240 cm2 . AD = 30 cm . M trung điểm AB , N trung điểm BC . nối AN , DM , MN . kéo dài AD và MN cắt nhau tại K . So sánh AK và AD
Cho tam giác ABC có diện tích = 72 cm2 . Hai điểm D và E lần lượt là trung điểm của cạnh AB,AC . Trên cạnh BC lấy 2 điểm M và N sao cho MN = 1/3 BC . Đường thẳng DE cắt các đoạn thẳng AM, AN lần lượt tại các điểm P, Q.
Tính diện tích tam giác MNQP