Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2018 lúc 15:02

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 6 2018 lúc 15:56

S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD).

Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC.

MH=NI( dt ANC=AMC và chung đáy AC).

S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI).

S(MFC)=S(MFB) (chung  chiều cao hạ từ Fxuống BC và đáy MC=MB)

suy ra S(FMC)=1/3S(NBC)=1/3× 150

=50.S(AFM)

=S(ABC)-S(FMC)-S(ABM)

=300-50-150=100 

S(BMN)=1/4S(ABN)

Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN.

Suy ra: MK=1/4AG(▲ BMN=1/4▲ABN và chung đáy NB).

S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2017 lúc 12:28

S(ABCD)=600.S(NBC)=S(ABM)=150.S(ABC)=300..S(ANC)=S(AMC)=1/4S(ABCD). Gọi MH và NI lần lượt là chiều cao của tam giác ANC và AMC. MH=NI( dt ANC=AMC và chung đáy AC). S(MFC)=S(NFC)(chung đáy FC và chiều cao MH=NI). S(MFC)=S(MFB) (chung  chiều cao hạ từ Fxuống BC và đáy MC=MB) suy ra S(FMC)=1/3S(NBC)=1/3× 150 =50.S(AFM) =S(ABC)-S(FMC)-S(ABM) =300-50-150=100 S(BMN)=1/4S(ABN) Gọi MK và AG lần lượt là chiều cao của tam giác BMN và ABN. Suy ra: MK=1/4AG( tam giác BMN=1/4tam giác ABN và chung đáy NB). S(MEF)=1/4S(AEF)(chung đáy EF và chiều cao MK=1/4AG) hay S(AEF)=4/5×S(AMF)=4/5×100=80

Crystal Jung
Xem chi tiết
o0 KISS MOSS 0o
8 tháng 1 2017 lúc 16:57

từng câu thôi nhìu thế ai làm nổi

nguyễn thị kim ngân
Xem chi tiết
Triệu Minh Khôi
3 tháng 8 2017 lúc 17:32

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

=

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu củ

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQMa A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc A

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

QM

1) Cho tam giác ABC, gọi I và K lần lượt là hình chiếu của A trên phân giác góc B và góc C. Cm: IK//BC

2) Cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm AB, CD. Cm: MN < (AD+BC)/2

3) Cho tam giác ABC (AB<AC) trên AB lấy M, AC lấy N sao cho BM=CN. Gọi I và K lần lượt là trung điểm MN, BC. IK cắt AB, AC tại P, Q. Cm: góc BPM = góc AQM

tóm lị là ABGHMN là sai 

nguyễn thị kim ngân
3 tháng 8 2017 lúc 17:41

Vậy tóm lại là sao, mk hk hỉu

Trần Hạ Vi
10 tháng 8 2018 lúc 14:38

m bị não chó ak Triệu Minh Khôi

Nguyễn Mạnh Khang
Xem chi tiết
Đặng Lê Nguyệt Hà
Xem chi tiết
Devil
15 tháng 5 2016 lúc 16:51

bài 1: ta có;CE là trung tuyến của tam giác ABC =>KE=1/3 CE=1/3 x21=7(cm)

CK=2/3 CE=2/3x21=14(cm0

Đặng Lê Nguyệt Hà
15 tháng 5 2016 lúc 16:41

5 người đầu tiên mình sẽ được mình tích

Oo Bản tình ca ác quỷ oO
15 tháng 5 2016 lúc 16:47

hic nhìu kinh!!!! 

Phùng Bảo Ngọc
Xem chi tiết
Nguyễn thanh duy
Xem chi tiết