CMR:10^n+18n chia hết cho 27
Cmr : (10^n-18n-1) chia hết cho 27 (n€N*)
ctr nó chia hết cho 3 và 9
Cmr A=10^n + 18n - 1 chia hết cho 27
Chứng minh rằng:10n + 18n - 1 chia hết cho 27.
Ta có: 10n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)
CMR : B= 10^n+18n-1 chia hết cho 27
B = 10n + 18n - 1
B = 10n - 1 - 9n + 27n
B = 999....9 - 9n + 27n
( n chữ số 9)
B = 9 x ( 111...1 - n) + 27n
( n chữ số 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3
( n chữ số 1)
=> 9 x ( 111...1 - n) chia hết cho 27. Mà 27n chia hết cho 27 => B chia hết cho 27
Chứng tỏ B chia hết cho 27
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
cmr: 10n+18n-1 chia hết cho 27
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
CMR: 10^n+18n-1 chia hết cho 27
ta có: 10^n+18n-1=100...0(n số 0)-1+18n=9...9(n c/s 0)+18n
ta thấy : 99..9 và 18n đều chia hết cho 3 và 9
mà 27=3.9
=>99...9+18n chia hết cho 27
hay 10^n+18n-1 chia hết cho 27
\(10^n+18n-1=10^n-1-9n+27n\)
=99...9(n số 9)-9n+27=9.(11...1 -n)+27n
n số 1)
vì 11..1(n số 1 ) có tổng các chữ số=n =>(11...1-n) chia hết cho 3
n số 1
=>9.(11...1-n) chia hết cho 27
n số 1
=>đpcm
Cmr: 10n +18n – 28 chia hết cho 27
CMR:
a,10n+18n-1 chia hết cho 27
b,10n+7n-7 chia hết cho 81
a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n
=9.(111...11(n chu so 9)+2n)
Xet 111...11(n chu so 9)+2n=111..11-n+3n
De thay tong cac chu so cua 111....11(n chu so 1) la n
=>111...11-n chia het cho 3
=>111...11-n+3n chia het cho 3
=>10^n+18n-1 chia het cho 27
b) cmr 10^n+18n-1 chia hết cho 27
c) cmr 10^n+72n-1chia het cho 81
b) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
c) 10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.
CMR: C= 10n + 18n-28 chia hết cho 27 (với mọi n thuộc N*)
C = 10n + 18n -28
+với n =1 => C =10+18 -28 =0 chia hết cho 9
+ Giả sử C chia hết cho 9 với n-1
=> C =10n-1 + 18(n-1) -28 chia hết cho 9
+ Ta chứng minh C chia hết cho 9 đúng với n
C= [10n +18n -28 = 10.10n-1 +18(n -1).10 -280 ] +(162n +432)
=10[10n-1 + 18(n-1) -28 ] +9(18n+48) chia hết cho 9
=> dpcm