Chứng minh rằng:(10^n+18*n-1):27 dư 0.
Chứng minh rằng:(10^n+72*n-1):81 dư 0
Chứng minh:
C=10^n + 18 . n - 1 chia hết cho 27
D=10^n + 72 . n - 1 chia hết cho 81
Chứng minh rằng:
a) 2n + 11...1 chia hết cho 3
b) 10n + 18.n - 1 chia hết cho 27
c) 10n +72.n - 1 chia hết cho 18
a) 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => 2n + 111...1 chia hết cho 3
b) 10n + 18n - 1
= 100...0 - 1 - 9n + 27n
n chữ số 0
= 999...9 - 9n + 27
n chữ số 9
= 9.(111..1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
=> 10n + 18n - 1 chia hết cho 27
c) 10n + 72n - 1
= 100...0 - 1 + 72n
n chữ số 1
= 999...9 - 9n + 81n
n chữ số 9
= 9.(111...1 - n) + 81n
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết cho 9
Tiếp theo làm tương tự câu trên .
vi no chia het cho 3 suy ra no chia het cho 3
a) 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => 2n + 111...1 chia hết cho 3
b) 10n + 18n - 1
= 100...0 - 1 - 9n + 27n
n chữ số 0
= 999...9 - 9n + 27
n chữ số 9
= 9.(111..1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
=> 10n + 18n - 1 chia hết cho 27
c) 10n + 72n - 1
= 100...0 - 1 + 72n
n chữ số 1
= 999...9 - 9n + 81n
n chữ số 9
= 9.(111...1 - n) + 81n
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết cho 9
Tiếp theo làm tương tự câu trên .
Chứng minh rằng :10 ^ n +72 - 1 chia hết cho 81
. Chứng minh rằng:
a) 2n + 11...có n chữ số...1 chia hết cho 3
b) 10^n +18^n - 1 chia hết cho 27
c) 10^n + 72 - 1 chia hết cho 9
Chứng minh rằng:
a) 88 + 220 chia hết cho 17.
b) 10n + 18.n - 1 chia hết cho 27.
c) 10n + 72.n - 1 chia hết cho 81.
a) 88 + 220
= (23)8 + 220
= 224 + 220
= 220.24 + 220
= 220(24 + 1 )
= 220.17 chia hết cho 17
Vậy 88 + 220 chia hết cho 17
b) Ta có : 10n + 18n -1 = 999...9 (có n chữ số 9) + 1 + 18 -1
= 999...9 + 18n
= 9. 111...1 + 9. 2n
= 9( 111...1 + 2n )
Ta có : 9( 111...1 + 2n ) = 9. (111...1 - n + 3n)
Số 111...1 và số n là 2 số chia hết cho 3 có cùng số dư. Do đó:
111...1 - n chia hết cho 3 ; 3n chia hết cho 3
Vậy 10n + 18n -1 chia hết cho 27
c) Gọi biểu thức trên là A
Ta có : A= 10n + 72n -1 = 999...9 ( có n chữ số 9 ) +1 + 72n -1
= 999...9 + 72n
= 9.111...1 + 72n
A : 9 = 111...1 + 8n = 111...1 - n + 9n
Số 111...1 và số n là 2 số chia cho 9 có cùng số dư. Do đó:
111...1 - n chia hết cho 9 ; 9n chia hết cho 9
Vậy 10n + 72n - 1 chia hết cho 72
Chứng minh rằng:
a.A=10^28+8 chia hết cho 72
b.B=10^n+18^n-1 chia hết cho 27,với n thuộc N
mk cần gấp các bn giúp mk nha
a) Ta có : A = 1028 + 8
= 100...0 + 8 (28 chữ số 0)
= 100...008 (27 chữ số 0)
Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008
lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8
=> 1028 + 8 \(⋮\)8 (1)
Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)
=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0)
=> 1028 + 8 \(⋮\)9(2)
Từ (1) và (2) ta có :
ƯCLN(8,9) = 1
=> 1028 + 8 \(⋮\)BCNN(8,9)
=> 1028 + 8 \(⋮\)72
Ta có :
\(10^{28}+8=100...008\)(27 chữ số 0 )
Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)
Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)
Chứng minh rằng:
a) 10n chia 9 dư 1 ( n e N )
b) 1028 + 8 chia hết cho 72
a, 10n chia 9 dư 1 => 10n - 1 có các chữ số là 9 thì chia hết cho 9.
=> 10n chia 9 dư 1.
b, Muốn chia hết cho 72 thì phải chia hết cho 8 và 9 vì ( 8,9 ) = 1
1028 + 8 chia hết cho 9 vì các chữ số chia hết cho 9.
1028 + 8 chia hết cho 8 vì có tận cùng là 008.
=> 1028 + 8 chia hết cho 72.
b, Đặt A = 10^28 + 8 Vì 10^28 có 3 chữ số cuối là 000 => 10^28 chia hết cho 8 Có 8 chia hết cho 8 => A chia hết cho 8 (1) A = 10^28 + 8 = 1000...0 ( 28 chữ số 0) = 1000...8( 27 chữ số 0) A có tổng các chữ số là 9 chia hết cho 9 => A chia hết cho 9 (2) Từ (1) , (2) => A chia hết cho 8 , A chia hết cho 9 mà UCLN(8,9)= 1 => A chia hết cho (8,9) hay A chia hết cho 72 Vậy A chia hết cho 72
1/Tìm số tự nhiên a nhỏ nhất.Biết rằng khi chia a cho 17 thì được số dư là 8.Còn khi chia a cho 25 thì được số dư là 16.
2/Chứng minh rằng:A=10n+18.n-1 chia hết cho 27 (với n là số thứ nhiên tùy ý)
1/
Gọi số cần tìm là a
Ta có :
a : 17 dư 8
=> a - 8 chia hết cho 17
=> a + 17 - 8 chia hết cho 17
=> a + 9 chia hết cho 17
a : 25 dư 16
=> a - 16 chia hết cho 25
=> a + 25 - 16 chia hết cho 25
=> a + 9 chia hết cho 25
=> a + 9 thuộc BC ( 17 ; 25 )
Ta có :
17 = 17
25 = 52
=> BCNN ( 17 ; 25 ) = 17 . 52 = 425
=> BC ( 17 ; 25 ) = B ( 425 ) =
=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }
=> a = { -9 ; 416 ; 941 ; 1366 ; .... }
Mà a là số tự nhiên nhỏ nhất
=> a = 416
Vậy số cần tìm là 416
2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath
Ta có :
10n + 18n - 1 = ( 10n - 1 ) + 18n = 999...9 + 18n ( số 999...9 có n chữ số 9 )
= 9 . ( 111...1 + 2n ) ( số 111...1 có n chữ số 1 )
= 9 . A
Xét biểu thức trong ngoặc :
A = 111...1 + 2n = 111...1 - n + 3n ( số 111...1 có n chữ số 1 )
Ta đã biết 1 số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3
Số 111...1 ( n chữ số 1 ) có tổng các chữ số là : 1 + 1 + 1 + ... + 1 = n ( vì có n chữ số 1 )
=> 111...1 ( n chữ số 1 ) và n có cùng số dư trong phép chia cho 3
=> 111...1 ( n chữ số 1 ) - n chia hết cho 3
=> A chia hết cho 3
=> 9 . A chia hết cho 27
Hay 10n + 18n - 1 chia hết cho 27 ( đpcm )
Chứng minh rằng:
a)10^28 + 8 chia hết cho 72
b)8^8+2^20 chia hết cho 17
c)10^n+18n+1chia hết cho 27
d)10^n +72n -1 chia hết cho 81
d) \(10^n+72n-1\)\(=100...0-1+72n\)
=\(999...9-9n+81n\)
n chữ số 9
=\(9.\left(111...1-n\right)+81n\)
VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9
mà 81n chia hết 9 => 10n + 72n -1 chia hết 9
b) \(10^n+18n-1\)
<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)
n
<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)
n
<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)
n
<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)
<=> \(9.9k+27n\)chia hết \(27\)
<=> \(81k+27n\)chia hết \(27\)
a) \(10^{28}+8\)chia hết cho 72
\(\Rightarrow10^{28}:9\)dư 1
\(\Rightarrow8:9\)dư 8
\(\Rightarrow1+8=9\)chia hết cho 9
\(\Rightarrow10^{28}+8\)chia hết cho 9 ( 1 )
\(10^{28}\)chia hết cho 8 ( vì 3 sớ tận cùng là 000 chia hết cho 8 )
8 chia hết cho 8
\(\Rightarrow10^{28}+8\)chia hết cho 8 ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với UCLN ( 8 ; 9 ) = 1 => ĐPCM
b) \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)chia hết cho 7 => ĐPCM
c) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
d