cho a+b+c=2009 chung minh rang \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2009\)
Cho a + b + c = 2009. Chứng minh rằng
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2009\)
Ta có a3 + b3 + c3 - 3abc
=[ (a+ b)3 + c3 ] - [3ab(a+b) + 3abc] = (a + b+ c)3 - 3(a + b).c(a + b + c) - 3ab.(a + b + c)
= (a + b+ c). [(a + b + c)2 - 3c(a + b) - 3ab]
= (a + b+ c).(a2 + b2 + c2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
=> \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=a+b+c=2009\)
Vậy.......
Cho a+b+c=2009
CMR: \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2009\)
Ta có :
\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-ac-bc}\)
\(=a+b+c=2009\)(đpcm)
Cho a+b+c=2009
Chứng minh \(\frac{a^3+b^3+c^3-3abc}{a^3+b^3+c^3-ab-ac-bc}=2009\)
cho a^3 b^3 + a^3 c^3 + b^3 c^3 =3a^2 b^2 c^2. chung minh rang (ab+bc)(bc+ac)(bc+ac)=-a^2 b^2 c^2. Giúp mình đi mình tích cho.
Có: \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2009+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{2009}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=\left(-\frac{2009}{2}\right)^2\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2=\left(-\frac{2009}{2}\right)^2\)
Mặt khác: \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=a^4+b^4+c^4+2.\left(-\frac{2009}{2}\right)^2=2009^2\)
\(\Leftrightarrow a^4+b^4+c^4=2009^2-2.\left(-\frac{2009}{2}\right)^2=2009^2-2.\frac{2009^2}{2^2}=2009^2-\frac{2009^2}{2}\)
--Hà Phương--
Cho a, b,c>0 thỏa mãn ab+bc+ac=3abc. Chứng minh :
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3.\)
\(P=\frac{\frac{1}{a}}{1+\frac{b}{a}.\frac{c}{a}}+\frac{\frac{1}{b}}{1+\frac{c}{b}.\frac{a}{b}}+\frac{\frac{1}{c}}{1+\frac{a}{c}.\frac{b}{c}}\)
Đặt \(\left(\frac{1}{a};\text{ }\frac{1}{b};\text{ }\frac{1}{c}\right)=\left(x;y;z\right)\)
Thì \(x+y+z=3\)
\(P=\frac{x}{1+\frac{z}{x}}+\frac{y}{1+\frac{x}{y}}+\frac{z}{1+\frac{y}{z}}=\frac{x^2}{x+z}+\frac{y^2}{y+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{x+z+y+x+z+y}=\frac{\left(x+y+z\right)^2}{2}=\frac{9}{2}.\)
bạn còn cách nào khác như biến đổi thẳng luôn trong vế trái thay vì đặt x,y ,z được không ? Cảm ơn nhiều !
ban co si duoi mau . sau do ap dung co si nguoc cho ca phan so la ra
chung minh rang:
a)10^n-4 chia het cho 3
b)41^10-1 chia het cho 10
c)2009^2008-2008^2009 khong chia het cho 2
max dễ :
10 chia 3 dư 1 , suy ra 10^n chia 3 dư 1^n
suy ra 10^n chia 3 dư 1
ta có : 4 chia 3 dư 1
suy ra 10^n-4 chia 3 dư 1-1
10^n-4 chia 3 dư 0
10^n-4 chia het cho 3
Cái gì mà dễ ợt?câu hỏi nào cũng đăng dễ ợt!
Cho ab+bc+ac= 3abc và a,b,c >0
Chứng minh \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{3}{\sqrt{2}}\)
cho a,b,c > 0 và a+b+c\(\le3\)
chứng minh rằng B=\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ac}\ge670\)
\(B=\frac{1}{a^2+b^2+c^2}+\frac{4}{2ab+2bc+2ac}+\frac{2007}{ac+bc+ac}\)
\(B\ge\frac{\left(1+2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{2007}{\frac{\left(a+b+c\right)^2}{3}}\)
\(B\ge\frac{9}{\left(a+b+c\right)^2}+\frac{6021}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}+\frac{6021}{3^2}=670\)
Dấu "=" xảy ra khi \(a=b=c=1\)