Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Edogawa Conan
Xem chi tiết
Phan Nghĩa
8 tháng 8 2020 lúc 15:34

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
tth_new
8 tháng 8 2020 lúc 20:03

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

Khách vãng lai đã xóa
Hoàng Phúc
Xem chi tiết
Thắng Nguyễn
23 tháng 8 2016 lúc 12:09

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT=A+B và xét

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\text{∑}\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\text{∑}\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\text{∑}\left(1-\frac{b^2}{1+b^2}\right)\ge\text{∑}\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\text{∑}ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

(Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu = khi a=b=c=1

Phạm Hữu Hiếu
11 tháng 1 2019 lúc 21:16

2 + 2 =22

Phạm Hữu Hiếu
3 tháng 3 2019 lúc 20:34

5555555555555 = 5 x 5 x ........

neko chan
Xem chi tiết
manh nguyen
23 tháng 8 2016 lúc 17:59

khó phết

Yuzuri Yukari
23 tháng 8 2016 lúc 18:11

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Ta tách VT = A + b và xét :

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{1+a^2}=\Sigma\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\Sigma\left(3a-\frac{3ab}{2}\right)\)\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\Sigma\left(1-\frac{b^2}{1+b^2}\right)\ge\Sigma\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\Sigma ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)=3}\))

Dấu = khi a = b = c = 1 .

Lightning Farron
23 tháng 8 2016 lúc 18:25

Yuzuri Yukari:copy câu trả lời của tôi 

Edogawa Conan
Xem chi tiết
Kiệt Nguyễn
17 tháng 10 2020 lúc 11:25

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 10 2020 lúc 11:38

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
Trang candy
Xem chi tiết
Cry Cry
Xem chi tiết
Vũ Quỳnh Trang
Xem chi tiết
Phước Nguyễn
23 tháng 7 2016 lúc 8:39

Không khó nha,!

HeroZombie
22 tháng 7 2016 lúc 18:57

\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)

l҉o҉n҉g҉ d҉z҉
2 tháng 4 2021 lúc 21:33

\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\)

\(=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)( do abc = 1 )

\(=\frac{bc}{ab+ac}+\frac{ac}{bc+ab}+\frac{ab}{ac+bc}\)(1)

Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)(1) trở thành \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)

và ta cần chứng minh \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)

Tuy nhiên đây là bất đẳng thức Nesbitt quen thuộc :D

nên ta có điều phải chứng minh

Đẳng thức xảy ra <=> x=y=z => a=b=c=1

Khách vãng lai đã xóa
trinh quang huy
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
Thanh Tùng DZ
14 tháng 12 2019 lúc 18:40

Cô-si Engel :

\(P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{a+b+c+6}\)

\(\ge\frac{a+b+c+2.3\sqrt[3]{\sqrt{ab}.\sqrt{bc}.\sqrt{ac}}}{a+b+c+6}=\frac{a+b+c+6\sqrt[3]{abc}}{a+b+c+6}=\frac{a+b+c+6}{a+b+c+6}=1\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
20 tháng 12 2019 lúc 18:56

Nguyễn Linh Chi Thanks cô,e đổi biến lộn ạ:(

Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)

Ta có:

\(P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\)

\(=\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\)

\(=\frac{1}{1+\frac{2y}{x}}+\frac{1}{1+\frac{2z}{y}}+\frac{1}{1+\frac{2x}{z}}\)

\(=\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\)

\(=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu "=" xảy ra tại \(a=b=c=1\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
14 tháng 12 2019 lúc 19:10

Do \(abc=1\) nên tồn tại các số x,y,z sao cho \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)

Khi đó:

\(\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\)

\(=\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\)

\(=\frac{1}{a+\frac{2b}{a}}+\frac{1}{1+\frac{2c}{b}}+\frac{1}{1+\frac{2a}{c}}\)

\(=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)

\(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu "=" xảy ra tại \(a=b=c=1\)

Khách vãng lai đã xóa