Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Khanh Đỗ
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 11 2021 lúc 14:11

\(f\left(x\right)=\dfrac{x^2-1}{x^4+1}\) dương trên miền đã cho

Ta có: \(\dfrac{x^2-1}{x^4+1}\sim\dfrac{x^2}{x^4}=\dfrac{1}{x^2}\) khi \(x\rightarrow+\infty\)

Mà \(\int\limits^{+\infty}_1\dfrac{dx}{x^2}\) hội tụ nên \(\int\limits^{+\infty}_1\dfrac{x^2-1}{x^4+1}dx\) hội tụ

Trần Thanh Tùng
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 6:13

Ta có: 

\(I=\int\limits^1_0\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx+\int\limits^{+\infty}_1\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx=I_1+I_2\)

Do hàm \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}\) liên tục và xác định trên \(\left[0;1\right]\) nên \(I_1\) là 1 tích phân xác định hay \(I_1\) hội tụ

Xét \(I_2\) , ta có \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}>0\) với mọi \(x\ge1\)

Đặt \(g\left(x\right)=\dfrac{1}{x^2\sqrt{x}}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{\left(x+1\right)x^2\sqrt{x}}{\left(x^2+1\right)\sqrt{x^3+1}}=1\) (1)

\(\int\limits^{+\infty}_1g\left(x\right)dx=\int\limits^{+\infty}_1\dfrac{1}{x^2\sqrt{x}}dx\) hội tụ do \(\alpha=\dfrac{5}{2}>1\) (2)

(1);(2) \(\Rightarrow I_2\) hội tụ

\(\Rightarrow I\) hội tụ

Quỳnh Như Trần Thị
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:13

a.

Đặt \(\sqrt{1-x^2}=u\Rightarrow x^2=1-u^2\Rightarrow xdx=-udu\)

\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^0_1\left(1-u^2\right).u.\left(-udu\right)=\int\limits^1_0\left(u^2-u^4\right)du=\left(\dfrac{1}{3}u^3-\dfrac{1}{5}u^5\right)|^1_0\)

\(=\dfrac{2}{15}\)

 

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:15

b.

\(\int\limits^2_1\dfrac{dx}{x^2-2x+2}=\int\limits^2_1\dfrac{dx}{\left(x-1\right)^2+1}\)

Đặt \(x-1=tanu\Rightarrow dx=\dfrac{1}{cos^2u}du\)

\(\left\{{}\begin{matrix}x=1\Rightarrow u=0\\x=2\Rightarrow u=\dfrac{\pi}{4}\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{1}{tan^2u+1}.\dfrac{1}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{cos^2u}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0du\)

\(=u|^{\dfrac{\pi}{4}}_0=\dfrac{\pi}{4}\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 18:17

c.

\(\int\limits^2_1\dfrac{dx}{\sqrt{4-x^2}}\)

Đặt \(x=2sinu\Rightarrow dx=2cosu.du\)

\(\left\{{}\begin{matrix}x=1\Rightarrow u=\dfrac{\pi}{6}\\x=2\Rightarrow u=\dfrac{\pi}{2}\end{matrix}\right.\)

\(I=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{\sqrt{4-4sin^2u}}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{2cosu}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}du\)

\(=u|^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}=\dfrac{\pi}{3}\)

Nguyễn Vũ Mai Phương
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2022 lúc 21:31

\(I=\int\limits^e_1x^2.ln^2x.\dfrac{1}{x\left(lnx+1\right)^2}dx\)

Đặt \(\left\{{}\begin{matrix}u=x^2ln^2x\\dv=\dfrac{1}{x\left(lnx+1\right)^2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2x.lnx\left(lnx+1\right)\\v=-\dfrac{1}{lnx+1}\end{matrix}\right.\)

\(\Rightarrow I=-\dfrac{x^2ln^2x}{lnx+1}|^e_1+\int\limits^e_12x.lnxdx=-\dfrac{e^2}{2}+I_1\)

Xét \(I_1\), đặt \(\left\{{}\begin{matrix}u=lnx\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x^2\end{matrix}\right.\)

\(\Rightarrow I_1=x^2lnx|^e_1-\int\limits^e_1xdx=...\)

Nguyễn Ngọc Minh Anh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2022 lúc 14:39

Đề bài là: \(\int\limits^{+\infty}_0\dfrac{ln^3x}{x}dx\) hay \(\int\limits^{+\infty}_0\dfrac{x.\left(ln^3x\right)}{x}dx\) nhỉ?

Nhìn cái đề vô lý quá, sao ko rút gọn x luôn cho rồi? Nó là cái tích phân thứ nhất thì hợp lý hơn?

Kim Tuyền
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2019 lúc 9:50

\(I=\int\limits^2_1\dfrac{\left(x+1\right)^2-2}{x+1}dx=\int\limits^2_1\left(x+1-\dfrac{2}{x+1}\right)dx\)

\(=\left(\dfrac{x^2}{2}+x-2ln\left|x+1\right|\right)|^2_1=\dfrac{5}{2}-2ln\dfrac{3}{2}\)

Ngọc Ánh Nguyễn Thị
Xem chi tiết
Hoàng Tử Hà
17 tháng 1 2021 lúc 10:38

Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ 

Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)

x  -2  -1  1  2  
\(x^2-1\) 00 

\(\left(-2;-1\right):+\)

\(\left(-1;1\right):-\)

\(\left(1;2\right):+\)

\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)

\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)

\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)

Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính 

Hoàng Tử Hà
17 tháng 1 2021 lúc 10:56

2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)

\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)

\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)

Hoàng Tử Hà
17 tháng 1 2021 lúc 11:18

3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)

Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)

\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)

Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)

\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)

\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)

I=A+B=...