Tìm x,y biết :
\(B=x^2-12x+7+7+Iy-2I\)
\(Iy-2I\) là giá trị tuyệt đối của y-2
a)x+(x+1)+(x+2)+.........+(x+2003)=2003 b)Ix-8I+Iy+2I=2
c)x-3 là bội của 5 d)3x+7 là bội của x+1 e)x-5 là ước của 3x+2 f)2x+1 là ước của -7
g)(x-2).(7-x)>0 h)Ix-7I< hoặc bằng 3 i)tìm x+y biết IxI=5 và IyI=7
lưu ý : I là giá trị tuyệt đối
Ix+2I + Iy+5I=0
I IyI + Ix+2I I +IxI =0
Chú thích : I là giá trị tuyệt đối
a,tìm x thuộc Z, biết Ix +5I-(-17) = 20
b,tìm các cặp số nguyên thỏa mãn (x-2).(y+3) = 15
c,tìm giá trị nhỏ nhất của biểu thức A= Ix-2I+Iy-5) -10 với x,y thuộc Z
các bạn trả lời nhanh mình đang vội
a) | x + 5 | - ( -17 ) = 20
=> | x + 5 | = 3
=> x + 5 = 3 hoặc x + 5 = -3
=> x = -2 hoặc x = -8
a) \(\left|x+5\right|-\left(-17\right)=20\)
\(\left|x-5\right|+17=20\)
\(\left|x-5\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-5=3\\x-5=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}}\)
vậy \(x\in\left\{8;2\right\}\)
b) \(\left(x-2\right)\left(y+3\right)=15\)
Ta có bảng:
x-2 | 1 | 15 | -1 | -15 |
x | 3 | 17 | 1 | -13 |
y+3 | 15 | 1 | -15 | -1 |
y | 12 | -2 | -18 | -4 |
Vậy..
c) \(A=\left|x-2\right|+\left|y-5\right|-10\)
Ta có: \(\left|x-2\right|\ge0\forall x\inℝ\)
\(\left|y+5\right|\ge0\forall y\inℝ\)
\(\Rightarrow A=\left|x-2\right|+\left|y-5\right|-10\ge-10\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}x-2=0\\y-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}}\)
Vậy \(x=2;y=5\)khi đạt \(GTNN=-10\)
hok tốt!!
Tìm các số nguyên x,y biết
(x - 1)2 + Iy + 2I = 0
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\)
=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left|y+2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy GTNN là 0 khi x = 1,y = -2
<=> x = 1,y = -2
Bài giải
\(\left(x-1\right)^2+\left|y+2\right|=0\)
Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|y+2\right|\ge\forall x\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left|y+2\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(1\text{ ; }-2\right)\)
Ta có: \(\left(x-1\right)^2+\left|y+2\right|=0\)
\(\Leftrightarrow\left(x-1\right)^2=-\left|y+2\right|\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\-\left|y+2\right|\le0\end{cases}\left(\forall x,y\right)}\) nên dấu "=" xảy ra khi:
\(\left(x-1\right)^2=-\left|y+2\right|=0\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
tìm số nguyên y biết
a, Iy+2I-y=2
b, I2-yI+y=6
c, Iy-3I+y-3=0
d, Iy-5I+Iy+5I=6
Tìm x,y
a) Ix-1I + Ix+2I =0
b) I2x-1I + Iy^2-yI = 0
c) Ix+1I + Ix+2I =3
#)Giải :
a) \(\left|x-1\right|+\left|x+2\right|=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b) \(\left|2x-1\right|+\left|y^2-y\right|=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\y^2-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\y^2=y\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\y\in\left\{-1;0;1\right\}\end{cases}}}\)
Timf giá trị nhỏ nhất của biểu thức
a, A=2.I3x-2I-1
b, B=5.I1-4xI-1
c, x^2 + 3.Iy-2I-1
d, x+I xI
a: \(A=2\cdot\left|3x-2\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=2/3
b: \(B=5\cdot\left|1-4x\right|-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=1/4
c: \(x^2+3\left|y-2\right|-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi x=0 và y=2
Tìm các cặp số nguyên x,y biết
a, giá trị tuyệt đối của x+ giá trị tuyệt đối của y=0
b, giá trị tuyệt đối của x+ giá trị tuyệt đối của y=2
c, 2 nhân giá trị tuyệt đối của x+ giá trị tuyệt đối của y=7
Tìm : x;y;z biết:
Ix-1I+Iy-2I+Ĩ-3I=0
|x-1|+|y-2|+|z-3|=0
|x-1|+|y-2|+|z-3|=0
Vì\(\left|x-1\right|\ge0;\left|y-2\right|\ge0;\left|z-3\right|=0\) nên |x-1|+|y-2|+|z-3| \(\ge0\)nên để biểu thức =0
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
nhận xét ta thấy
/x-1/ >=0
/y-2/>=0
/z-3/>=0
vậy /x-1/+/y-2/+/z-3/ >=0
dấu bằng xảy ra khi và chỉ khi
x-1=0
y-2=0
z-3=0
=> x=1, y=2, z=3