a, Phân tích đa thức thành nhân tử: x4 + 2011x2 +2010x + 2011
b, Tìm các số nguyên x;y sao cho: 3x3 + xy + 3
c, Tìm các hằng số a và b sao cho x3 +ax + b chia x+1 dư 7; chia cho x-2 dư 4.
Cho đa thức: Q(x) = x4 + 3x2 + 1
a. Phân tích đa thức Q(x) thành nhân tử.
b. Tìm nghiệm nguyên của phương trình y2 = x4 + 3x2 + 1.
\(3x^2+4x+1=3x^2+3x+x+1=\left(x+1\right)\left(3x+1\right)\)
Phân tích đa thức thành nhân tử
\(x^4+2011x^2+2010x+2011\)
=(x4−x3+2011x2)+
(x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)
=(x2+x+1)(x2−x+2011)
=(x4−x3+2011x2)+(x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)
=(x2+x+1)(x2−x+2011)
x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)=(x2+x+1)(x2−x+2011)
Phân tích đa thức sau thành nhân tử: x4+2011x2+2010x+2011
x4+2011x2+2010x+2011
=(x4+x3+x2)+(2011x2+2011x+2011)-(x3+x2+x)
=x2(x2+x+1)+2011(x2+x+1)-x(x2+x+1)
=(x2+x+1)(x2+2011-x)
x4+2011x2+2010x+2011=x4-x+2011x2+2011x+2011
=x(x3-1)+2011(x2+x+1)
=x(x- 1)(x2+x+1)+2011(x2+x+1)
=(x2+x+1)[x(x-1)+2011]
=(x2+x+1)(x2-x+2011)
Phân tích các đa thức sau thành nhân tử: c ) x 4 - y 4
x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)
Tìm các số nguyên a, b, c sao cho khi phân tích đa thức (x + a)(x - 4) - 7 thành nhân tử ta được (x + a)(x + b)(x + c).
ta co'
(x+a).(x-4)-7=(x+b).(x+c)
nen voi x=4 thi
-7=(4+b)(4+c)=-7.1=7.(-1)
do a,c,b∈Z va b,c co vai tro nhu nhau nen gia su b>=c
co 2 TH xay ra
**{4+b=7│4+c=-1}↔{b=3│c=-5}suy ra a=2
ta co(x+2)(x-4_-7=(x+3)(x-5)
** {4+b=1│4+c=-7}↔{b=-3│c=-11} suy ra a=-10
ta co(x-10)(x-4)-7=(x-3)(x-11)
Phân tích các đa thức sau thành nhân tử
a) x 2 + x y − 5 x − 5 y
b) 25 − x 2 − y 2 − 2 x y
c) x 4 + x 3 + 2 x 2 + x + 1
Phân tích các đa thức sau thành nhân tử: x 4 - 2 x 3 - 2 x 2 - 2 x - 3
x 4 - 2 x 3 - 2 x 2 - 2 x - 3 = ( x 4 − 1 ) − ( 2 x 3 + 2 x 2 ) − ( 2 x + 2 ) = ( x 2 + 1 ) ( x 2 − 1 ) − 2 x 2 ( x + 1 ) − 2 ( x + 1 ) = ( x 2 + 1 ) ( x − 1 ) ( x + 1 ) − 2 x 2 ( x + 1 ) − 2 ( x + 1 ) = ( x + 1 ) ( x 2 + 1 ) ( x − 1 ) − 2 x 2 – 2 = ( x + 1 ) ( x 2 + 1 ) ( x − 1 ) − 2 ( x 2 + 1 ) = ( x + 1 ) ( x 2 + 1 ) ( x – 1 − 2 ) = ( x + 1 ) ( x 2 + 1 ) ( x − 3 )
x^4 - 2x^3 - 2x^2 - 2x - 3
= x^4 - 1 - 2x^3 - 2x^2 - 2x -2
= ( x - 1 ) ( x + 1 ) ( x^2 + 1 ) - 2x^2 ( x + 1 ) - 2 ( x + 1 )
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2x^2 - 2 ]
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 - 2 ( x^2 - 1 ) ]
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2 ( x - 1 ) ( x + 1 ) ]
= ( x + 1 ) ( x - 1 ) [ ( x^2 + 1 ) - 2 ( x +1 )
= ( x + 1 ) ( x - 1 ) ( x^2 +1 - 2x - 2 )
= ( x + 1 ) ( x - 1 ) ( x^2 - 2x - 1 )
Phân tích các đa thức sau thành nhân tử:
d ) x 4 + 2 x 3 - 4 x – 4
d) x4 + 2x3 - 4x – 4 = (x4 – 4) + (2x3 – 4x) = (x2 – 2)(x2 + 2) + 2x(x2 – 2)
= (x2 – 2)(x2 + 2 + 2x) = (x - √2)( x + √2)( x2 + 2 + 2x)
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
b) \(z^4+2010x^2+2009x+2010\)
a) (x + y + z)3 - x3 - y3 - z3
= (x + y + z)3 - z3 - (x3 + y3)
= (x + y + z - z)[(x + y + z)2 + (x + y + z).z + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + z2 + 2xy + 2yz + 2zx + 2xz + 2yz + z2 + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + 3z2 + 2xy + 4yz + 4zx) - (x + y)(x2 - xy + y2)
= (x + y)(3z2 + 3xy + 5yz + 4zx)
b) Sửa đề x4 + 2010x2 + 2009x + 2010
= (x4 + x2 + 1) + (2009x2 + 2009x + 2009)
= (x4 + 2x2 + 1 - x2) + 2009(x2 + x + 1)
= [(x2 + 1)2 - x2] + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 1) + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2010)
Phân tích đa thức thành nhân tử:
a) x 4 - 6 x 3 + 12 x 2 - 14x + 3.
b) x 4 + 6 x 3 + 7 x 2 -6x + l.
a) ( x 2 – 4x + 1)( x 2 – 2x + 3).
b) ( x 2 + 5x – 1)( x 2 + x – 1).