Cho n là số tự nhiên Chứng minh rằng 3^n + 2 + 2^ n+3 + 3^n + 2^n+1 chia hết cho 10
Cho n là số tự nhiên. Chứng minh rằng.
1/(n+10)(n+15) chia hết cho 2
2/n(n+1)(n+2) chia hết cho 2&3
1,
Vì n là số tự nhiên nên n có dạng 2k hoặc 2k+1(k là số tự nhiên)
TH1:n=2k=>n+10 chia hết cho 2 (1)
TH1:n=2k+1=>n+15 chia hết cho 2 (2)
Từ (1),(2)=>(n+10)(n+15) chia hết cho 2
2,
Vì n là số tự nhiên nên n,n+1,n+2 là 3 số tự nhiên liên tiếp
=>n(n+1)(n+2) chứa ít nhất 1 bội của 2 và chứa 1 bội của 3
=>đccm
Mấy bài trước mk lm mà bn đâu có **** cho mk bây giờ mk sẽ ko lm cho bn
TH1:n chia het cho 3
=>n(n+1)(n+2) chia het cho 3
TH2:n chia 3 du 1
=>n=3a+1 (a la so tu nhien)
=>n+2=3n+1+2=3n+3=3(n+1) chia het cho 3
=>n(n+1)(n+2) chia het cho 3
TH3:n chia 3 du 2
=>n=3a+2 ( a thuoc N)
=>n+1=3n+2+1=3n+3=3(n+1) chia het cho 3
=>n(n+1)(n+2) chia het cho 3
vay n(n+1)(n+2) luon chia het cho 3 (1)
lai co :n;n+1;n+2 la 3 so tu nhien len tiep
=>trong 3 so do chac chan co 1 so chan chia het cho 2
=>n(n+1)(n+2) luon chia het cho 2 (2)
tu (1) va (2) =>dpcm
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
Cho n là số tự nhiên. Chứng minh rằng :
a) (n + 10)(n + 2) chia hết cho 2 và 3
b) n(n + 1)(2n + 1) chia hết cho 2 và 3
cho n là số tự nhiên. chứng minh rằng
a) ( n+10*(n+15) chia hết cho 2
b) n*( n+1) * ( n+2) chia hết cho cả 2 và 3
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Cho n là số tự nhiên .Chứng minh rằng:
a) (n+10) (n+15) chia hết cho 2
b) n(n+1) (n+2) chia hết cho 2 và 3
c) n(n+1) (2n+1) chia hết cho 2 và 3
a. Xét n chẵn
=> n + 10 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Xét n lẻ
=> n + 15 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n
b. n (n + 1) (n + 2)
=> n + n + 1 + n + 2
=> 3n + 3
Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3
=> 3n + 3 chia hết cho 3
Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2
Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2
Và n (n + 2) = n.n + n.2 = 2n . n2 có cơ số 2 nên chia hết cho 2.
c. n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n
Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2
Cho n là số tự nhiên, chứng minh rằng :
a) (n+ 10)(n + 15) chia hết cho 2
b) n(n+ 1)(n+2) chia hết cho cả 2 và 3
c) n(n + 1)(2n + 1) chia hết cho 2 và 3
Cho n là số tự nhiên, chứng minh rằng :
a) (n+ 10)(n + 15) chia hết cho 2
b) n(n+ 1)(n+2) chia hết cho cả 2 và 3
c) n(n + 1)(2n + 1) chia hết cho 2 và 3
Mình chỉ biết làm ý a thôi, ý bc chắc cũng tương tự,
bài cho n là số tự nhiên vậy n có thể là số chẵn hoặc là số lẻ,
a, trong biểu thức (n+10)(n+15) ta xét hai trường hợp
+)trường hợp 1: n lẻ, ta có: (n+10) sẽ là số lẻ; (n+15) sẽ là số chẵn. (n+10)(n+15) là tích của một số lẻ với một số chẵn , vậy kết quả sẽ là số chẵn và chia hết cho 2
+)trường hợp 2: n chẵn, ta có: (n+10) sẽ là số chẵn;(n+15) sẽ là số lẻ. (n+10)(n+15) là tích của một số chẵn và một số lẻ, vậy kết quả sẽ là số chẵn và chia hết cho 2
a) Ta có n là số tự nhiên nên n chẵn hoặc n lẻ
nếu n chẵn thì n +10 chẵn nên n+ 10 chia hết cho 2. Do đó (n+10)(n+15) chia hết cho 2
nếu n lẻ thì n + 15 chẵn nên n+15 chia hết cho 2. Do đó (n+10)(n+15) chia hết cho 2
Vậy (n+10)(n+15) chia hết cho 2
b) c) tương tự
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!