Tam giác ABC cân tại A,AH vuông góc BC
a) Chứng minh tam giác AHB = tam giác AHC
b)Gỉa sử AB=AC=5cm;BC=8cmTính AH
c) Trên tia đối của tia HA lấy điểm M sao cho HA=HM.Chứng minh tam giácABM cân
d) Chứng minh BM //AC
cho tam giác ABC cân tại A , H là trung điểm BC
a) chứng minh tam giác AHB = tam giác AHC
b) chứng minh AH ⊥ BC
kẻ HE vuông góc AB tại E
HF vuông góc AC tại F
a, tam giac ABC can tai A (gt) => AB = AC va goc ABC = goc ACB (dn)
xet tamgiac ABH va tam giac ACH co : BH = HC do H la trung diem cua BC (gt)
=> tam giac ABH = tam giac ACH (c - g - c)
Cho tam giác ABC cân tại A, đường cao AH
a) Chứng minh : tam giác AHB=tam giác AHC
b) Chứng minh : AH là đường phân giác của góc BAC
c) Biết AB = 5cm, BC= 6cm. Tính AH
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)
c: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC=BC/2=3cm
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2+3^2=5^2\)
=>\(HA^2=25-9=16\)
=>HA=4(cm)
Tam giác ABC cân tại A,AH vuông góc BC
a) Chứng minh tam giác AHB = tam giác AHC
b)Gỉa sử AB=AC=5cm;BC=8cmTính AH
c) Trên tia đối của tia HA lấy điểm M sao cho HA=HM.Chứng minh tam giácABM cân
d) Chứng minh BM //AC
ai bt giải giúp mình với ( đang cần gấp) -_-
cho tam giác ABC cân tại A kẻ AH vuông góc với BC(H thuộc BC)
a, Chứng minh: tam giác AHC= tam giác AHC
b, Kẻ HD vuông góc với AB(D thuộc AB), HE vuông góc với AC(E thuộc AC): Chứng minh tam giác HDE Cân
c,Nếu cho góc A=120 độ thì tam giác HDE trở thành tam giác gì? Vì sao?
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh tam giác AHB = tam giác AHC
b) Giả sử AB=AC=5cm, BC=8cm. Tính AH
c) Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Chứng minh tam giác ABM cân
d) Chứng minh BM//AC
(Bạn tự vẽ hình giùm)
a/ \(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)
Cạnh AH chung
=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) (đpcm)
b/ Ta có \(\Delta AHB\)= \(\Delta AHC\) (cm câu a) => HB = HC (hai cạnh tương ứng) => H là trung điểm của BC
=> BH = \(\frac{BC}{2}\)= \(\frac{8}{2}\)= 4 (cm)
Ta có \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lí Pitago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 42
=> AH2 = 25 - 16
=> AH2 = 9
=> AH = \(\sqrt{9}\)
=> AH = 3
c/ \(\Delta AHB\)vuông tại H và \(\Delta MHB\)vuông tại H có: AH = MH (gt)
Cạnh HB chung
=> \(\Delta AHB\)vuông = \(\Delta MHB\)vuông (cạnh huyền - cạnh góc vuông) => AB = MB (hai cạnh tương ứng)
=> \(\Delta ABM\)cân tại B (đpcm)
d/ Ta có \(\Delta AHB\)= \(\Delta AHC\)(cm câu a) => \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng) (1)
Ta có \(\Delta AHB\)= \(\Delta MHB\)(cm câu c) => \(\widehat{M}=\widehat{BAH}\)(hai góc tương ứng) (2)
Từ (1) và (2) => \(\widehat{M}=\widehat{CAH}\)ở vị trí so le trong => BM // AC (đpcm)
Cho▵ABC cân tại A. Kẻ tia AH vuông góc với BC ( H thuộc BC)
a) Chứng minh▵AHB =▵AHC
b) Chứng minh HB = HC
c) Kẻ IH vuông góc với AB tại I, HK vuông góc với AC tại K. Chứng minh▵AIK là tam giác cân d) Chứng minh IK // BC e) Chứng minh AH là đường trung trực của đoạn thẳng IK
a) Ta xét ▵AHB và▵AHC, ta có
AH là cạnh chung
AC=AB ( vì tam giác cân tại A)
góc AHC = góc AHB là góc vuông (90 độ)
-> ▵AHB =▵AHC (cạnh huyền- cạnh góc vuông)
b) Ta có ▵AHB =▵AHC (cmt)
->HB=HC ( 2 cạnh tương ứng)
c) Ta xét ▵AKH và ▵AIH. Ta có:
AH là cạnh chung
góc AKH = góc AIK = 90 độ
-> ▵AKH =▵AIH (cạnh huyền - cạnh góc vuông)
-> AK = AI (2 cạnh tương ứng) nên ▵AIK là tam giác cân và cân tại A
d) Ta áp dụng tính chất: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.
Ta có AH là cạnh chung cùng vuông góc với IK và BC
-> IK // BC
e) Ta cho giao điểm của AH và IK là O
Ta xét ▵AKO và ▵AIO
Ta có AK=AI (cmt)
Góc AOK = góc AOI = 90 độ
-> ▵AKO = ▵AIO
-> KO = IO ( 2 cạnh tương ứng) -> AH là đường trung trực của đoạn thẳng IK
Cho tam giác ABC có AB = AC. Kẻ Ah vuông góc BC (H thuộc BC)
a) Chứng minh tam giác AHB = tam giác AHC
b) Chứng minh AH là tia phân giác của góc BAC
c) Chứng minh điểm H là trung điểm của đoạn BC
help me=')))
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)
c: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Cho tam giac ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC) a/Chứng minh: tam giác AHB=tam giác AHC b/Giả sử AB=AC=5cm,BC=8cm. Tính độ dài AH c/Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Chứng minh: tam giác ABM cân d/Chứng minh BM// AC Cho mik cái hình
a ) Ta có ΔABC cân tại A .
\(\Rightarrow\) AB = AC
Có AH là đường cao
\(\Rightarrow\) AH đồng thời là trung tuyến
\(\Rightarrow\) H là trung điểm của BC
Xét ΔAHB và ΔAHC có :
AB = AC
Góc AHB = Góc AHC = 90
BH = HC
\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )
b ) Xét ΔAHB vuông tại H có .
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)
c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .
\(\Rightarrow\) ΔABM cân tại B
d ) Ta có : BAM cân tại B
\(\Rightarrow\) Góc BAM = Góc BMA
Xét ΔBAC cân tại A có HA là trung tuyến
\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .
\(\Rightarrow\) Góc BAH = Góc CAH
\(\Rightarrow\) Góc BMA = Góc HAC
Mà 2 góc này ở vị trí so le trong của BM và AC .
\(\Rightarrow\) BM // AC
a) ( Cái này có khá nhiều cách chứng minh nhé . )
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )
b) => HB = HC ( hai cạnh tương ứng )
Mà BC = 8cm
=> HB = HC = BC/2 = 8/2 = 4cm
Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :
AB2 = AH2 + HB2
52 = AH2 + 42
=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)
c) HM là tia đối của HA
=> ^AHB + ^BHM = 1800
=> 900 + ^BHM = 1800
=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H
Xét tam giác vuông AHB và tam giác vuông BHM ta có :
HM = HA ( gt )
^BHM = ^AHB ( cmt )
HB chung
=> Tam giác AHB = tam giác BHM ( c.g.c )
=> BM = BA ( hai cạnh tương ứng )
Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B
d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a)
Tam giác AHB = Tam giác BHM ( theo ý c)
Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM
=> ^HBM = ^ACH ( hai góc tương ứng )
mà hai góc ở vị trí so le trong
=> BM // AC ( đpcm )
( Hình có thể k đc đẹp lắm )
a. Xét hai tam giác vuông AHB và tam giác vuông AHC có
\(\widehat{AHB}=\widehat{AHC}=90^O\)
Cạnh AH chung
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác AHB = tam giác AHC [ cạnh huyền - cạnh góc vuông ]
b.Theo câu a ; tam giác AHB = tam giác AHC
\(\Rightarrow\)HB = HC =\(\frac{BC}{2}=\frac{8}{2}=4cm\)
Áp dụng định lí Py-ta-go vào tam giác vuông AHB có
\(AB^2=AH^2+HB^2\)
\(\Rightarrow AH^2=AB^2-HB^2\)
\(\Rightarrow AH^2=5^2-4^2\)
\(\Rightarrow AH^2=9\)
\(\Rightarrow AH=3cm\)
c.Xét hai tam giác vuông AHB và tam giác vuông MHB có
\(\widehat{AHB}=\widehat{MHB}=90^O\)
Cạnh HB chung
HA = HM [ gt ]
Do đó ; tam giác AHB = tam giác MHB [ cạnh góc vuông - cạnh góc vuông ]
\(\Rightarrow\)AB = MB [ cạnh tương ứng ]
Vậy tam giác ABM là tam giác cân tại B
d.Vì tam giác ABM cân tại B nên góc BAM = góc BAM [ 1 ]
Theo câu a ; tam giác AHB = tam giác AHC
\(\Rightarrow\)góc HAB = góc HAC hay góc MAB = góc MAC [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra ; góc BMA = góc CAM [ ở vị trí so le trong ]
Vậy BM // AC
Học tốt
cho tam giác abc cân tại a h là trung điểm của bc. kẻ hm vuông góc ab ( m thuộc ab), hn vuông góc với ac (n thuộc ac)
a, chứng minh tam giác ahb = tam giác ahc
b, chứng minh tam giác hmn cân
c, chứng minh mn//bc
d, gọi e là giao điểm của ab và hn, f là giao điểm của ac và hm, i là giao điểm của ah và ef, chứng minh điểm h cách đều 3 cạnh tam giác mni
a: Xet ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và HM=HN
=>ΔHMN cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//CB