C/m rang voi n thuoc N ta co 1/6+1/66+1/176+…+1/(5n+1).(5n+6)=n+1/5n+6
CMR : với mọi n thuộc N thì ta luôn có :
1/6+1/66+1/176+...+1/(5n+1)(5n+6)=n+1/5n+6
Chung to rang :
a)(2n + 1) (2n+2) chia het cho 3 . Voi n thuoc so tu nhien
b)(5n+1) (5n+2) chia het cho 6. Voi n thuoc so tu nhien.
Đề thi hsg nè, ai giúp làm mik làm đi.
CMR với mọi số tự nhiên n thì ta luôn có:
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{n+1}{5n+6}\)
Ta có:\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}\)
\(=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{5n+6}\right)\)
\(=\frac{1}{5}.\left(\frac{5n+5}{5n+6}\right)=\frac{n+1}{5n+6}\left(\text{đ}pcm\right)\)
CTR:1/1*6+1/6*11+1/11*16+...+1/(5n+1)*(5n+6)=n+1/5n+6 (n thuoc N)
\(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+...+\frac{1}{\left(5n+1\right)\cdot\left(5n+6\right)}\)\(5A=\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{\left(5n+1\right)\cdot\left(5n+6\right)}\)\(5A=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\)
C = 1/1.6+1/6.11+1/11.16+.....+1/(5n+1).(5n+6) n thuoc N
C = 1/1 . 6 + 1/6 . 11 + 1/11 . 16 + ...+ 1/( 5n + 1 ) . ( 5n + 6 )
C = 1/5 . ( 5/1 . 6 + 5/6 . 11 + 5/11 . 16 + ...+ 5/( 5n + 1 ) . ( 5n + 6 ) )
C = 1/5 . ( 1 - 1/6 + 1/6 - 1/11 + 1/11 - 1/16 + ...+ 1/5n + 1 - 1/5n + 6 )
C = 1/5 . ( 1 - 1/5n + 6 )
C = 1/5 . 1 - 1/5 . 1/5n + 6
C = 1/5 - 1/ 5 . ( 5n + 6 )
CMR với mọi n thuộc N ta có:
1/1.6+1/6.11+....+1/(5n+1)(5n+6) = n+1/5n+6
Ta có:
\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\right)\)
\(=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{5n+6}\right)=\frac{1}{5}\left(\frac{5n+6}{5n+6}-\frac{1}{5n+6}\right)=\frac{1}{5}.\frac{5n+5}{5n+6}=\frac{1}{5}.\frac{5\left(n+1\right)}{5n+6}=\frac{5\left(n+1\right)}{5\left(5n+6\right)}=\frac{n+1}{5n+6}\)(ĐPCM)
bạn Phạm Thiết Tường ơi ch mình hỏi sao lại nhân \(\frac{1}{5}\)với \(\frac{1}{1}-\frac{1}{5n+6}\)vậy
@tranlethanhtruc: Bn ấy lm sai.
Cau 1: Co tat ca bao nhieu so co 3 chu so ma trong moi so co duy nhat 1 chu so 5.
Cau 2: Biet rang 3n+1 va 5n+4 (n thuoc N) la hai so khong nguyen to cung nhau. Khi do UCLN cua 3n+1 va 5n+4 la bao nhieu.
Cau 3: Tim cap (x;y) nguyen am thoa man:xy+3x+2y+6=0 va lxl+lyl=5.
Chứng minh rằng với mọi n thuộc N ta luôn có:
1/1.6 + 1/6.11 + 1/11.16 + ......+ 1/( 5n + 1) (5n + 6) = n+1/ 5n + 6
chứng tỏ rằng với mọi n thuộc N ta luôn có
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)
\(=\dfrac{n+1}{5n+6}=VP\)