Tìm cặp số tự nhiên \(\left(x_{o;}y_o\right)\)thoả mãn (2x+1)(y-5)=12 sao cho \(x_o+y_o\)lớn nhất
MÁY TÍNH CẦM TAY
1>Cho dãy số được xác định bởi \(x_1=1;x_2=2\)
\(x_n=nx_{n-1}-x_{n-2}-n\left(n\ge3\right)\)
Tính \(x_{12};x_{13};x_{14}\)
2> Cho biết \(\frac{210}{5689}=\frac{1}{x+\frac{1}{y+\frac{1}{z}}}\)với x, y, z là các số tự nhiên. Tính \(A=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
3> Tìm ước nguyên tố lớn nhất của \(8631844^2+4609606^2+10738729^2\)
1. Với D là biến đếm, ta có quy trình bấm phím liên tục:
D=D+1:A=DxB-C-D:C=B:B=A
CALC giá trị C=1; B=2; D=2 bấm "=" liên tục
Kết quả: x12 = 5245546; x13 = 67751587; x14 = 943276658
2. Dùng máy tính tính được x=27; y=11; z=19 => A=?
Hướng dẫn cụ thể cách bấm bài 2 được ko bạn
Bài 2 ta có \(x+\frac{1}{y+\frac{1}{z}}=\frac{5689}{210}\)
- B1: Tìm thương và số dư của 5689 cho 210
Tìm đc thương là 27 => x = 27 và dư 19
- B2: Tìm thương và dư của 210 cho 19
Tìm đc thương là 11 => y = 11 và dư 1
Đến khi thấy dư 1 thì dừng lại, số chia cũ là 19 chính là z = 19
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
Tìm tất cả các cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn: \(2^x=5^y-624\)
\(2^x=5^y-624\)
\(\Leftrightarrow5^y=2^x+624\)
Nếu \(x\ge1,y\ge1\) thì vô lý do VT là số lẻ mà VP là số chẵn.
Nếu \(x=0\Rightarrow5^y=625\Rightarrow y=4\)
Nếu \(y=0\Rightarrow2^x=-623\), vô lý.
Vậy cặp số \(\left(x;y\right)=\left(0;4\right)\) là cặp số duy nhất thỏa mãn ycbt.
1) Tìm các tham số thực $m$ để phương trình $9 x^{2}-m x+1=0$ có nghiệm kép.
2) Cho $x_{1}$ và $x_{2}$ là hai nghiệm của phương trình $x^{2}-2 x-4=0$. Tính giá trị của biểu thức $T=x_{1}\left(x_{1}-2 x_{2}\right)+x_{2}\left(x_{2}-2 x_{1}\right)$.
Bài 2 :
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=4\Rightarrow x_1^2+x_2^2=4+8=12\)
Ta có : \(T=x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)\)
\(=x_1^2-2x_2x_1+x_2^2-2x_1x_2=12+16=28\)
tìm các cặp số tự nhiên (x;y) thỏa mãn \(8\left(xy\right)^2+8y^4-8x^2\le x\left(63y^2-x^2\right)\)
Cặp số \(\left(x_{ }o;y_{ }o\right)\) thỏa mãn \(3x^2-6x+y-2=0\) sao cho \(y_o\) lớn nhất . Khi đó \(x_o+y_o=\) ....
TÌM SỐ TỰ NHIÊN X, BIẾT:
(21+22+23+...+299)= 2x_2
Tìm số tự nhiên x biết:
320 chia hết cho x, 180 chia hết cho x, 460 chia hết cho x và 5_<x_<30.
320 chia hết cho x
180 chia hết cho x
460 chia hết cho x
=> x = ƯC(320;180;460)
Ư(320) mà lớn hơn 5 và bé hơn 30 là {8;10;16;20}
Ư(180) mà lớn hơn 5 và bé hơn 30 là {6;8;10;12;18}
Ư(460) mà lớn hơn 5 và bé hơn 30 là {10;20;}
Từ đó ta thấy x chỉ có thể là 10
Vì \(\hept{\begin{cases}320⋮x\\180⋮x\\460⋮x\end{cases}}\)=> \(x\inƯC\left(320;180;460\right)\);\(\left(5\le x\le30\right)\)
Mà 320 = 27 .5
180 = 22 .32 .5
460 = 22 .5 . 23
=> ƯCLN(320 ;180 ; 460) = 22 . 5 = 20
Mà ƯC(320 ; 180 ; 46) = Ư(20) \(\in\){1 ; 2 ; 4 ; 5 ; 10 ; 20}
Lại có : \(5\le x\le30\)
\(\Rightarrow x\in\left\{5;10;20\right\}\)
1.Tìm tất cả các cặp số tự nhiên (x;y) thỏa mãn phương trình: \(\left(x+1\right)^4-\left(x-1\right)^4=y^3\)
2. Tìm tất cả các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13