tìm n để
\(A=\frac{n+1}{n-3}\) là phân số tối giản
a) chứng minh phân số sau là tối giản \(\frac{3n-2}{4n-3}\)
b) cho A=\(\frac{n+1}{n-3}\)
+) tìm n để A là phân số
+) tim n de A la so nguyen
+) tìm n để A là phân số tối giản
a) gọi D là UCLN(3n-2;4n-3)
\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D
\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D
\(\Rightarrow\)(12n-9-12n+8) chia hết cho D
\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}
hay UCLN(3n-2;4n-3) \(\in\){1;-1}
chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản
b) +) để A là phân số thì n-3\(\ne\)0
=>n\(\ne\)3
+) ta có \(\frac{n+1}{n-3}\)= \(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)
để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên
=> 4 chia hết n-3
=> n-3 \(\in\)U(4)
mà U(4) = {-1;-2;-4;1;2;4}
ta có bảng
n-3 | -1 | -2 | -4 | 1 | 2 | 4 |
n | 2 | 1 | -1 | 4 | 5 | 7 |
vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
cho phân số A=\(\frac{n+1}{n+3}\)(n E z,n khác 3) .Tìm n để A là phân số tối giản
a) Tìm số tự nhiên n để \(A=\frac{n}{2n+3}\) là phân số tối giản
b) Chứng tỏ rằng phân số \(\frac{3a}{3a+1}\) (với a thuộc N ) là phân số tối giản
ta có: muốn n/2n+3 là phân số tối giản thì (n,2n+3)=1
Gọi ƯCLN(n,2n+3) là :d
suy ra: n chia hết cho d và 2n+3 chia hết cho d
suy ra : (2n+3) - 2n chia hết cho d
3 chia hết cho d
suy ra: d thuộc Ư(3) =( 3,1)
ta có: 2n +3 chia hết cho 3
2n chia hết cho 3
mà (n,3)=1 nên n chia hết cho 3
vậy khi n=3k thì (n,2n+3) = 3 (k thuộc N)
suy ra : n ko bằng 3k thì (n,2n+3)=1
vậy khi n ko có dạng 3k thì n/2n+3 là phân số tối giản
a/ n rút gọn đi còn 1/2+3 bằng 1/5
b/rút gọn 3a hết còn 1/1 vậy bằng 1
Tim số tự nhiên n để phân số (2n+3)/(4n+1) tối giản
Cho: \(A=\frac{-3}{n+2}\)
a)Tìm số nguyên n để A là phân số tối giản? ( PS tối giản hay là PS không rút gọn được nữa là PS mà tử và mẫu chỉ có ước chung là 1 và -1)
b) Tìm số nguyên n để A là phân số rút gọn được?
c) Tìm số nguyên n để A là số nguyên tố
Cho phân số \(A=\frac{n+1}{n-3}\)(n thuộc Z)
a, Tìm n để A là phân số
b, Tìm n để A là phân số tối giản
c, Tìm n để A có giá trị lớn nhất
Ta có : n + 1 chai hết cho n - 3
<=> n - 3 + 4 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
Ta có bảng :
n - 3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
a) n = 4;5;7
b) n = 4
c) n = 7
Chúc bạn học tốt !!!
Cho phân số A=\(\frac{n+1}{n-3}\)( n thuộc Z)
a) Tìm n để A là phân số.
b) Tìm n để A là phân số tối giản.
c) Tìm n để A có giá trị lớn nhất.
a) để n là phân số thì n-3 khác 0 nên n khác 3
vậy n là mọi số nguyên khác 3
b) n lẻ
c) để A lớn nhất thì n-3 sẽ nhỏ nhất nên n-3=1 vậy n=4
k nha bạn
k cho mình mình k lại
Cho phân số A=n+1/n+3(n€Z, n khác 3)
Tìm n để A là phân số tối giản
Chứng tỏ 12n+1/30n+2 là phấn số tối giản
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
Bài 1*:Tìm \(n\in N\)để phân số \(\frac{5n+6}{8n+7}\)không tối giản
Bài 2*: Tìm số tự nhiên n nhỏ nhất để các phân số sau là tối giản:\(\frac{7}{n+9};\frac{8}{n+10};...;\frac{31}{n+33}\)
Bài 3*: Cho phân số\(\frac{p}{q}\) là tối giản. Chứng minh phân số\(\frac{p+q}{q}\) cũng tối giản
cho A \(\frac{n+1}{n-3}\)
tìm n để A là phân số tối giản
Để A là phân số tối giản thì n + 1 phải không chia hết cho n - 3
Mà n + 1 = n - 3 + 4
vì n - 3 chia hết cho n-3 rồi nên 4 phải không chia hết cho n - 3
\(\Rightarrow n-3\in\left\{3\right\}\)
=> n = 6
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}\)
=> 4 chia hết cho n-3
=> n-3E{ -1;1;-2;2;-4;4}
=> nE{2;4;1;5;-1;7}
1,Cho Phân số \(\frac{n+9}{n-6}\)( n thuộc N)
a, Tìm n để phân số có giá trị nguyên
b, Tìm n để phân số là tối giản
c, Tìm n để phân số rút gọn được
2, Chứng minh \(\frac{12n+1}{30n+2}\)là phân số tối giản
3, Thực hiện phép tính: 1000! (456.789789-789.456456)
tớ làm câu cuối thôi, 2 câu trên dễ rồi
Xét thừa số thứ 2 ta có:
456.789789-789.456456
=456.1001.789-789.1001.456=0
Vậy tích 1000!(456,789789-789.456456)=0
Để phân số trên nguyên thì n+9 chia hết cho n-6
Mà n-6 chia hết cho n-6
=>(n+9)-(n-6) chia hết cho n-6
=>15 chia hết cho n-6
=> n-6 thuộc {-15;-5;-3;-1;1;3;5;15}
=> n thuộc ....{-9;1;3:5;7;9;11;21)
tớ trả lời câu 1 phần b
ta có A= (x-6) +15/ (x-6)
để A tối giản thì x-6 và 15 nguyên tố cùng nhau
mặt khác 15=3.5
suy ra x-6 không chia hết cho3 và x-6 không chia hết cho 5
suy ra x không chia hết cho 3 và x-6 không chia hết cho 5k
suy ra x không chia hết cho 3t và x không chia hết cho 5k+1
(t,k thuộc N) nhớ k cho tớ nhé