So sánh:
1. 212121/ 353535 và 131313/ 141414
2. 2012/ 2013+ 2013/ 2014+ 2015/ 2012 vs 3
So sánh:
1. 212121/ 353535 và 131313/ 141414
2. 2012/ 2013+ 2013/ 2014+ 2015/ 2012 vs 3
1/ Ta có : \(\frac{212121}{353535}=\frac{3.7.10101}{5.7.10101}=\frac{3}{5}=\frac{42}{70}\)
\(\frac{131313}{141414}=\frac{13.10101}{14.10101}=\frac{13}{14}=\frac{65}{70}\)
Vì 42 < 65 => \(\frac{42}{70}<\frac{65}{70}\) => \(\frac{212121}{353535}<\frac{131313}{141414}\)
cho B = 2012/2013 + 2013/2014 + 2015/2012 . hãy so sánh B với 3
\(B=\frac{2013-1}{2013}+\frac{2014-1}{2014}+\frac{2012+3}{2012}\)
\(B=1-\frac{1}{2013}+1-\frac{1}{2014}+1+\frac{3}{2012}=3+\frac{3}{2012}-\left(\frac{1}{2013}+\frac{1}{2014}\right)\)
Ta có
\(\frac{1}{2013}< \frac{1}{2012};\frac{1}{2014}< \frac{1}{2012}\Rightarrow\frac{1}{2013}+\frac{1}{2014}< \frac{2}{2012}\)
Mà \(\frac{3}{2012}-\frac{2}{2012}=\frac{1}{2012}>0\Rightarrow\frac{3}{2012}-\left(\frac{1}{2013}+\frac{1}{2014}\right)>0\)
=> B>3
cho B = 2012/2013 + 2013/2014 + 2015/2012 . hãy so sánh B với 3
\(B=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2015}{2012}\)
\(B=\frac{2012}{2013}+\frac{2013}{2014}+\left(\frac{1}{2012}+\frac{1}{2012}+\frac{2013}{2012}\right)\)
\(B=\left(\frac{2012}{2013}+\frac{1}{2012}\right)+\left(\frac{2013}{2014}+\frac{1}{2012}\right)+\frac{2013}{2012}\)
\(3=1+1+1\)
\(\frac{2012}{2013}+\frac{1}{2012}>1\)
\(\frac{2013}{2014}+\frac{1}{2012}>1\)
\(\frac{2013}{2012}>1\)
vậy B > 3
1. So sánh M và N ( Ko Quy Đồng)
biết M = \(\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}\)và
N =\(\frac{2012+2013+2014}{2013+2014+2015}\)
( Giải rõ ràn nha) tớ tick cho
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)
\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Vậy M>N
So sánh:\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)và\(\frac{2010}{2008}+\frac{2011}{2013}+\frac{2012}{2014}+\frac{2013}{2015}\)
So sánh (2012^2013+2013^2013)^2014 và (2012^2013+2013^2014)^2013
so sánh A=2012/2013+2013/2014 và B=2012+2013/2013+2014
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
(1/2012+1/2013-1/2014)/(5/2012+5/2013-5/2014)-(2/2103+2/2014-2/2015)/(3/2013+3/2014-3/2015)
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)
so sánh
a. 212121/313131 và 21/31
b. 2012/2013 và 2011/2012