giúp mk giải hpt này với:
3x^2+xy-4x+2y=2 và x(x+1)+y(y+1)=4
1,giải hpt :\(\left\{{}\begin{matrix}x+2\sqrt{y-1}=0\\4x-\sqrt{y-1}=0\end{matrix}\right.\)
giúp mk câu này với ạ
Đây không phải 1 hệ PT (vì thiếu dấu "="). Bạn xem lại đề!
Giải hệ pt:
a)(x+√(x^2+4))(y+√(y^2+1))=2 và 27x^6=x^3-8y+2
b)(8x-3)√(2x-1) -y-4y^3=0 và 4x^2-8x+2y^3+y^2-2y+3=0
c) x(1+y-x)=-2y^2-y và x(√2y -2)=y(√(x-1)-2)
d) √(x+2y)+√(2x-y)+x^2y=√x+√3y+xy^2 và 2(1-y)√(x^2+2y-1)=y^2-2x-1
e)(y-2x+√y-√x)/√xy +1=0 và √(1-xy) +x^2-y^2=0
CÁC BẠN ƠI..GIÚP MK VS Ạ...MAI MK HOK R...CẢM ƠM TRƯỚC Ạ...☺️☺️☺️
giải hpt:
{x^2 +2y-4x=0
4x^2-4xy^2+y^4-2y+4=0
giúp mình câu này mai mình thi
giải hpt: \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
Cộng hai vế lại với nhau ta có:
\(4x^2-4xy^2+y^4+x^2-4x+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-y^2=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y^2=4\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=2;y=2\left(tm\right)\\x=2;y=-2\end{cases}}\)
Thay x,y vào pt và tính
=> x=2 và y=2 thỏa mãn
=>(x;y)=(2;2) (t/m)
@Linh: Làm nhầm rồi
HPT\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
Cộng vế với vế của hai phương trình, ta được:
\(HPT\Leftrightarrow5x^2-4xy^2+y^2-4x+4=0\)
\(\Leftrightarrow\left(4x^2-4xy^2+y^2\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(2;4\right)\)
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
b) Ta có hpt <=> \(\left\{{}\begin{matrix}2\sqrt{x}-3y+2=-4z^2\\2\sqrt{3x}+4y-2=6z^2\\-3\sqrt{x}+y-4=-2z^2\end{matrix}\right.\)
cộng 3 vế của 3 pt, ta có \(\left(2\sqrt{3}-1\right)\sqrt{x}=4\Leftrightarrow\sqrt{x}=\dfrac{4}{2\sqrt{3}-1}\Leftrightarrow x=\dfrac{16}{\left(2\sqrt{3}-1\right)^2}\)
đến đây thay căn(x)=...vào và đặt z^2=m, ta sẽ ra 1 hệ mới chỉ có 2 ẩn y và m bậc 1 , lát thế vào sẽ ra bậc 2 thì dễ rồi !
mọi người ơi, giúp em giải hpt này với ạ.
\(\left\{{}\begin{matrix}2x-y=1-2y\\3x+y=3-x\end{matrix}\right.\)
\(\hept{\begin{cases}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{cases}}\)
giải hộ mk hpt này vs , mk cảm ơn
ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)
Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))
Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)
Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
+) Với \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)
+) Với \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)
Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)
1,giải phương trình:
\(\sqrt{-x^2+4x-3}+\sqrt{2x^2+8x+1}=x^3-4x^2+4x+4\)
2. giải hpt:
\(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(3x+2y\right)\left(y+1\right)=4-x^2\end{matrix}\right.\)
Giải các HPT sau:
1) \(\hept{\begin{cases}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
2) \(\hept{\begin{cases}x^2+1+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}}\)
3) \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
p/s: cần được giúp đỡ. Rất GẤP!!! các bn ko cần phải làm hết đâu nha.
3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)
Xét phương trình (2) ta có:
\(x^2+\left(y-3\right)x+y^2-4y+4=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)
\(\Leftrightarrow-3y^2+10y-7\ge0\)
\(\Leftrightarrow1\le y\le\frac{7}{3}\)
\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)
Tương tự ta có:
\(0\le x\le\frac{4}{3}\)
\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)
Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)
Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm
1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
Xét phương trình đầu ta có
\(xy+x+y-x^2+2y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)
\(\Rightarrow x=1+2y\)
Thế vào pt dưới ta được
\(\sqrt{2y}\left(y+1\right)=2y+2\)
\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)
Tới đây tự làm tiếp nhé
2/ Ta lấy PT đầu - phương trình sau ta được
x2 + 1 + y(y + x) - 3y - (x2 + 1)(y + x - 2) = 0
<=> (y + x - 3)(y - x2 - 1) = 0
Tới đây làm tiếp nhé