Cho hbh ABCD, đường thẳng a cắt AB, AC lần lượt ở E,M,F. Chứng minh AB/AE+AD/AF=AC/AM
Cho hình bình hành ABCD . Một đường thẳng a cắt đoạn AB , AC , AD lần lượt tại E , M , F .
Chứng minh rằng \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AM}\)
cho hình bình hành ABCD đường thẳng d cắt AB,AC,AD lần lượt tại E,G,F vẽ BM//DN//d(M,N thuộc AC)
chứng mình
a) AM=NC
b) AC/AG=AB/AE+AD/AF
1. Đường thẳng a cắt các cạnh AB,AD và đường chéo AC của hbh ABCD theo thứ tự tại E,F,M. Chứng minh : AB/AE + AD/AF = AC/AM
2. Tứ giác ABCD có B^ =D^ =90'. Từ một điểm M bất kỳ trên đường chéo AC, kẻ MP _|_ BC, MQ_|_ AD. Chứng minh: MP/AB + MQ/CD =1
GIÚP MIK NHEN . CẦN GẤP LẮM AK
Cho hình bình hành ABCD. Một đường thẳng a cắt AB,AC,AD lần lượt tại E,M,F. CMR: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AM}\)
Qua B và D kẻ hai đường thẳng song song với đường thẳng D và cắt AC tại H và K.
Gọi giao điểm 2 đường chéo của hình bình hành ABCD.
Áp dụng định lí Ta-lét, ta có các tỉ số :
\(\frac{AB}{AE}=\frac{AH}{AM}\); \(\frac{AD}{AF}=\frac{AK}{AM}\)
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH}{AM}+\frac{AK}{AM}=\frac{AH+AK}{AM}=\frac{2AK+IH+IK}{AM}\)(1)
Ta có : \(\Delta BHI=\Delta DKI\left(gcg\right)\)
\(\Rightarrow IH=IK\)
Thay vào (1) ta được :
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AM}=\frac{2\left(AK+IK\right)}{AM}=\frac{2AI}{AM}\)
Mà \(AI=\frac{1}{2}AC\Rightarrow2AC=AI\)
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AM}\)(Đpcm)
1.Cho hình bình hành ABCD một đường thẳng cắt AB, AD, AC lần lượt tại E, F, G .Chứng minh : AB/AE+AD/AF=AC/AG
2.Qua đỉnh C của hình bình hành ABCD kẻ đường thẳng cắt BD, AB, AD ở E, G, F chứng minh DE^2=FE/EG*BE^2
Cho mình hỏi hai câu này tí ạ :33
Câu 4: Cho hình bình hành ABCD (AC > BD). Gọi E, F lần lượt là hình chiếu của C trên các đường thẳng AB, AD. Gọi H là hình chiếu của B trên AC. Chứng minh rằng: a) ∆HAB ∆EAC và AB. AE = AH. AC b) AC! = AB. AE + AD. AF
Câu 5: Cho hình thoi ABCD có ABC 6 = 60°. Một đường thẳng đi qua đỉnh D không cắt hình thoi nhưng cắt các đường thẳng AB, BC lần lượt tại E, F. Gọi M là giao điểm của AF, CE. Chứng minh rằng: a) ∆ADE ∆CFD và ∆AEC ∆CAF. b) AD! = AM. AF.
Mng có thể giải chi tiết kèm cả hình hộ mình đc k ạ :33
Cái chỗ AB! và AD! nghĩa là AB2 và BD2 đấy ạ
Cho tam giác ABC nhọn và M nằm giữa B và C . Vẽ đường thẳng d cắt các đoạn thẳng AB,AM,AC lần lượt tại D,E,F. Chứng Minh : BC.AM/AE = BM. AC/AF + MC . AB/AD
Cho hình bình hành ABCD, kẻ đường thẳng a bất kỳ cắt AB, AD lần lượt tại E và F. Giả sử G là giao điểm của a với AC. chứng minh AB/AE + AD/AF = AC/AG
Cho hình bình hành ABCD, kẻ đường thẳng a bất kỳ cắt AB, AD lần lượt tại E và F. Giả sử G là giao điểm của a với AC. chứng minh AB/AE + AD/AF = AC/AG