Giúp mình 2 bài này:
Bài 1:Cho tam giác ABC có trung tuyến AM.N là điểm thuộc AM. BN cắt AC tại E,CN cắt AB tại F. Chứng minh: \(\frac{AE}{EC}=\frac{AF}{FB}\)
Bài 2:Cho đường thẳng d cắt các cạnh AB,AD,AC của hình bình hành ABCD lần lượt tại E,F,O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)
1.Cho hình bình hành ABCD một đường thẳng cắt AB, AD, AC lần lượt tại E, F, G .Chứng minh : AB/AE+AD/AF=AC/AG
2.Qua đỉnh C của hình bình hành ABCD kẻ đường thẳng cắt BD, AB, AD ở E, G, F chứng minh DE^2=FE/EG*BE^2
Bài 10: Cho tam giác ABC, trung tuyến AD có G là trọng tâm. Vẽ đường thẳng d qua G cắt cạnh AB; AC lần lượt tại E; F. Chứng minh:
a) \(\frac{AB}{AE}+\frac{AC}{AF}=3\)
b) \(\frac{BE}{AE}+\frac{CE}{AF}=1\)
Cho hình bình hành ABCD, E là điểm bất kì trên cạnh AB ( E≠A, E≠B ). Tia DE cắt AC ở F, cắt CB ở G.
a) Chứng minh ∆AEF ∆CDF; ∆AFD ∆CFG.
b) Chứng minh FD2 = FE.FG.
c) Từ F kẻ đường thẳng song song với đường thẳng AB cắt AD tại điểm H. Chứng minh 1:AE+1:AB=1:HF
Cho △ ABC ,trung tuyến AD có G là trọng tâm ,Ve đường thẳng d qua G cắt cạnh AB;AC lần lượt ở E và F .Chứng minh:
a)\(\frac{AB}{AE}+\frac{AC}{FA}=3\)
b)\(\frac{BE}{AE}+\frac{CE}{FA}=1\)
Cho △ABC , đường thẳng // BC cắt các cạnh AB , AC lần lượt tại E và F
a) Cho BE = 2cm , AE = 4 cm , AF = 6cm . Tính FC .
b) CHo AE = 6cm , EB = 2cm , AC = 4cm . Tính AF ,FC .
c) Cho \(\frac{AF}{AC}=\frac{2}{3}\)và AE = 3cm . Tính EB
d) Kẻ FP // AB ( P ∈ BC ) Chứng minh rằng \(\frac{CP}{CB}+\frac{AE}{AB}=1\)
cho hình thang cân ABCD(AB<CD); AB//CA và AB=AD. Hai đường thẳng AD và BC cắt nhau tại E. Biết ED=15cm, DC=10cm
a, CM: DB là tia phan giác của góc ADC
b, tính BE và BC
c, Đường thẳng song song với đáy AB cắt các đoạn thẳng AD, BC và đường chéo BD, AC lần lượt tại M, Q,N,P. Chứng minh: \(\frac{DN}{BD}=\frac{CP}{AC}\)
d, Chứng minh: MN=PQ
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Chứng minh rằng :AC=2EF
c, Chứng minh rằng \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)