Tính tổng:A = 1.2 + 2.3 + 3.4 +... +9 9 + 100
A=9/1.2+ 9/2.3+ 9/3.4+ .... +9/98.99 + 9/99/100
Tính giá trị biểu thức
A=9/1.2+ 9/2.3+ 9/3.4+ .... +9/98.99 + 9/99/100
=9(1- 1/2 + 1/2 -1/3+...+1/99 -1/100)
=9.(1- 1/100)
=9.99/100
=891/100
A=9/1.2+9/2.3+...+9/99.100
A/9=1/1.2+1/2.3+....+1/99.100
A/9=1-1/2+1/2-1/3+....+1/99-1/100
A/9=1+(-1/2+1/2)+(-1/3+1/3)+....+(-1/99+1/99)-1/100
A/9=1-1/100
A/9=99/100
A=99/100.9=891/100
Vậy A=891/100
mik ko biết đúng hay sai mn góp ý giúp mik nha
\(A=\frac{9}{1\cdot2}+\frac{9}{2\cdot3}+\frac{9}{3\cdot4}+...+\frac{9}{98\cdot99}+\frac{9}{99\cdot100}\)
\(\Rightarrow A=9\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)
\(\Rightarrow A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=9\left(1-\frac{1}{100}\right)=9\cdot\frac{99}{100}=\frac{891}{100}\)
HK TỐT #
a)1.2+2.3+3.4+...+19.20
b)9+99+999+...+999...9(100 so 9)
c)999...9x222...2(100 so 9 va 100 so 2)
SOS!!!
a) \(1.2+2.3+3.4+...+19.20\)
\(=\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
\(=3080\)
b) \(9+99+999+...+999...9\left(100so9\right)\)
\(\)\(=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(1000...0-1\right)\left(99so0\right)\)
\(=\left(10+10^2+10^3+...10^{99}\right)+\left(-1\right).100\)
\(=\left(1+10+10^2+10^3+...10^{99}\right)+\left(-1\right).101\)
\(=\dfrac{10^{99+1}-1}{99-1}-101\)
\(=\dfrac{10^{100}-1}{98}-101\)
\(=\dfrac{10^{100}-9899}{98}\)
c) \(999.9x222...2\) (100 số 9; 100 số 2)
\(9x2=18\)
\(99x22=2178\)
\(999x222=\text{221778}\)
\(9999x2222=22217778\)
\(99999x22222=2222177778\)
\(.........\)
Theo quy luật trên ta có 100 số 9 nhân 100 số 2:
\(999.9x222...2=222...21777...78\) (99 sô 2; 1 số 1; 99 số 7; 1 số 8)
A, 1.2 + 2. 3 + 3. 4 + ....+ 19 . 20
⇒\(\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
⇒3080
vậy kết quả câu a, là 3080
tính giá trị biểu thức : A = 9/1.2+9/2.3+9/3.4+...+9/98.99+9/99.100
\(A=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=9\left(1-\dfrac{1}{100}\right)=\dfrac{891}{100}\)
A= 9/1.2+9/2.3+9/3.4+....+9/98.99+9/99.100.Tính A
A = 9/1.2 + 9/2.3 + 9/3.4 +...+ 9/98.99 + 9/99.100
= 9. (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
= 9. (1 - 1/100)
= 9 . 99/100
= 891/100
tính giá trị biểu thức
A= 9/1.2+9/2.3+9/3.4+...+9/98.99+9/99.100
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9\times\frac{99}{100}\)
\(A=\frac{891}{100}\) hoặc =8,91
A=9/1.2+9/2.3+9/3.4+...+9/98.99+9/99.100
A=9.(1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100)
A=9.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100)
A=9.(1/1-1/100)
A=9.99/100
A=891/100
A=8+91/100 ( viết dưới dạng hỗn số )
Vậy A=8+91/100
Nkớ k cho mink đó nha !!!
Tính : A= 9/1.2+9/2.3+9/3.4+...+9/2020.2019 Các bạn giải nhanh và chi tiết giúp mình nhé. :
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=9\left(1-\frac{1}{2020}\right)\)
\(=9.\frac{2019}{2020}\)
\(=\frac{18171}{2020}\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(A=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(A=9\left(1-\frac{1}{2020}\right)=\frac{9.2019}{2020}=\frac{18171}{2020}\)
...
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{2019.2020}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(A=9.\left(1-\frac{1}{2020}\right)\)
\(A=9.\left(\frac{2020}{2020}-\frac{1}{2020}\right)\)
\(A=9.\frac{2019}{2020}\)
\(A=\frac{18171}{2020}\)
hok tốt!
tính giá trị biểu thức A= -9/1.2-9/2.3-9/3.4-....-9/98.99-9/99.100
giúp mik vs nhé
a=9/1.2+9/2.3+9/3.4+...+9/98.99+9/99.100
a = 9/1.2 + 9/2.3 + 9/3.4 + ... + 9/98.99 + 9/99.100
a = 9.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/98.99 + 1/99.100)
a = 9.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
a = 9.(1 - 1/100)]
a = 9.99/100
a = 891/100
\(a=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)\)
\(=9.\)\(\frac{99}{100}\)
\(=\frac{891}{100}\)
a = 9/1.2 + 9/2.3 + 9/3.4 + ... + 9/98.99 + 9/99.100
a = 9.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/98.99 + 1/99.100)
a = 9.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
a = 9.(1 - 1/100)]
a = 9.99/100
a = 891/100
A=9/1.2+9/2.3+9/3.4+...+9/98.99+9/99.100
A=\(\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
A=9(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\))
A=9(\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\))
A=9(\(1-\frac{1}{100}\))
=9.\(\frac{99}{100}\)
=\(\frac{891}{100}\)