Cho a, b là hai số thực thỏa mãn a.b > 0. Khi đó, giá trị nhỏ nhất của biểu thức \(Q=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)là Qmin = .....
___________________
Giúp mình nha. Gấp lắm!!!
Cho a,b là hai số thực thõa mãn a.b>0. Tính giá trị nhỏ nhất của biểu thức: \(Q=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)
gtnn=4 dok pn k nka. đảm bảo đúg lun mjk vừa làm xog
Bạn nhân hai biểu thức rồi dùng bất đẳng thức cô-si.suy ra min=4
Cho a,b là hai số thực thõa mãn a.b>0
Khi đó, giá trị nhỏ nhất của biểu thức Q=(a+b)(1/a+1/b), Qmin=?
(a+b)(1/a+1/b)=1+a/b+b/a+1
=2+(a^2+b^2)/(a*b)
vì a^2+b^2>0; a*b>0
=>Qmin=2
Cho a,b là hai số thực dương thỏa mãn :\(9a^2+4b^2=9\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\left(1+a\right)\left(1+\frac{3}{2b}\right)+\left(1+\frac{2b}{3}\right)\left(1+\frac{1}{a}\right)\)
Giúp mình với!!!!!!!!!!! Cần gấp ạ!!!!!!
Cho a, b, c là ba số dương thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức
T = \(\frac{\left(1+a\right)\left(1+b\left(1+c\right)\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Cho a,b là các số dương thỏa mãn a.b=4.
Tìm giá trị nhỏ nhất của biểu thức: P=\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)
Vì (a-b)2 \(\ge\)0 \(\forall\)a,b\(\Rightarrow\)a2+b2 \(\ge\)2ab. Mà ab=4\(\Rightarrow\)a2+b2 \(\ge\)8.
\(\Rightarrow\)P=\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)\(\ge\)\(\frac{\left(a+b-2\right).8}{a+b}\)
Đặt t=a+b\(\Rightarrow\)t\(\ge\)4 (Do a+b \(\ge\)2\(\sqrt{ab}\)= 4)
\(\Rightarrow\)P=\(\frac{\left(t-2\right).8}{t}\) = \(\frac{8t-16}{t}\)=\(8-\frac{16}{t}\)
Vì t\(\ge\)4 \(\Rightarrow\)\(\frac{16}{t}\le\frac{16}{4}=4\)\(\Rightarrow-\frac{16}{t}\ge-4\)\(\Rightarrow\left(8-\frac{16}{t}\right)\ge8-4=4\)
\(\Rightarrow P\ge4.\)Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\a.b=4\end{cases}\Leftrightarrow a=b=2}\)
Vậy P min = 4 \(\Leftrightarrow\)a=b=2.
cho 3 số thực a,b,c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức sau
\(P=\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\left(2+c\right)\left(3+a+b\right)\)
dang no giong bai bdt vap LHP chuyen nam 2017-2018
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức : \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Có cách UCT :)
\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)
Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..
Đẳng thức xảy ra khi a=b=c=2
Đó nhớ cho mình nha
Cho a, b là số dương thay đổi thỏa mãn a + b = 2 . Tính giá trị nhỏ nhất của biểu thức
Q = \(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
Rút gọn Q = a2 + b2 + a2 + b2 -6a/b - 6b/a + 9/a2 + 9/b2 = a2 - 6a/b + 9/b2 + b2 - 6b/a + 9/a2 + a2 + b2
= ( a - 3/b )2 + (b - 3/a )2 + a2 + b2 = (a - 3/b )2 + 2(ab - 3) + b2 + (b - 3/a)2 - 2(ab - 3) + a2 = (a - 3/b ) ^2 +2(a - 3/b)b + b^2 + (b - 3/a)^2 -2(b-3/a)a +a^2 = (a -3/b +b )^2 + (b-3/a-a)^2 = (2-3/b)^2 + (b-3/a-a)^2 mik chỉ bik làm tới đây thôi bạn thông cảm mak hình như giá trị nhỏ nhất của Q là 25 tại a=3/2,b=1/2 hoặc a=3/2,b=1/2