Cho nửa (O) đường kính AB.Lấy điểm P khác A,B trên nửa đường tròn.Gọi T là giao điểm của AB và tiếp tuyến tại P của nửa đường tròn.Chứng minh góc APO=góc BPT
Cho đường tròn tâm O,đường kính AB.Lấy điểm P khác A trên đường tròn.Gọi T là giao điểm của AP với tiếp tuyến tại B của đường tròn. Chứng minh góc APO=góc PBT
\(\widehat{A_1}\)là góc nội tiếp chắn cung \(\widebat{PB}\)
\(\Rightarrow\widehat{A_1}=\frac{1}{2}.sđ\widebat{PB}\)
\(\widehat{B_1}\)là góc tạo bởi tiếp tuyến BT và dây BP
\(\Rightarrow\widehat{B_1}=\frac{1}{2}.sđ\widebat{PB}\)
\(\Rightarrow\widehat{A_1}=\widehat{B_1}\left(=\frac{1}{2}sđ\widebat{PB}\right)\)(1)
Xét \(\Delta APO\)có OA = OP = R
\(\Rightarrow\Delta APO\)cân tại O \(\Rightarrow\widehat{A_1}=\widehat{P_1}\)(2)
Từ (1) (2) => \(\widehat{B_1}=\widehat{P_1}\)hay \(\widehat{APO}=\widehat{PBT}\)
Cho đường tròn (O') đường kính AB .Lấy điểm P khác A và B trên đường tròn. G ọi T là giao điểm của AP với tiếp tuyến tại B của đường tròn.Chứng minh góc APO = góc PBT
Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C (C khác A và B). Gọi D là giao điểm của đường thẳng BC với tiếp tuyến tại A của nửa đường tròn tâm O và I là trung điểm của AD a. Chứng minh BC.BD = 4R² b. Chứng minh IC là tiếp tuyến của nửa đường tròn tâm O c. Từ C kẻ CH vuông góc với AB (H thuộc AB) BI cắt CH tại K. Chứng minh K là trung điểm của CH.
cho nửa đường tròn (O;R) đường kính AB.lấy M trên tiếp tuyến tại A của (O) M # A.vẽ tiếp tuyến MC với (O), C là tiếp điểm.Kẻ CH vuông góc với AB tại H,I là giao điểm của CH và MB.chứng minh IC=IH
Cho đường tròn tâm (O) , đường kính AB . Lấy điểm P khác A và B trên đường tròn . Gọi T là giao điểm của AP với tiếp tuyến tại B của đường tròn . Chứng minh góc APO = góc PBT
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bờ là AB). Trên AB lấy M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. N là trung điểm AD.
a) Chứng minh NC là tiếp tuyến của nửa đường tròn tâm O.
b) Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN \(\left(E\in AN\right).\) Đường tròn đường kính NC cắt EC tại F. Chứng minh tia NF luôn đi qua một điểm cố định khi M di chuyển trên đoạn AB.
p/s: giải giúp mk câu b nhoa!!!
(Quá lực!!!)
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
cho nửa đường tròn O đường kính AB trên nửa đường tròn O lấy điểm D( D khác A và B ) kẻ tiếp tuyến Ax cắt BC tại C
a) tính góc ADC
b) gọi i là trung điểm của AC. Chứng minh ID là tiếp tuyến của nửa đường tròn
c) từ D, kẻ DH vuông góc AB tia BC cắt DH tại K.Chứng minh K đà trung điểm của DH.
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
hay \(\widehat{ADC}=180^0-90^0=90^0\)
b: Ta có: ΔADC vuông tại D
mà DI là đường trung tuyến ứng với cạnh huyền AC
nên DI=IC=IA=AC/2
Xét ΔODI và ΔOAI có
OD=OA
DI=AI
OI chung
Do đó: ΔODI=ΔOAI
Suy ra: \(\widehat{ODI}=\widehat{OAI}=90^0\)
hay ID là tiếp tuyến của (O)
Cho nửa đường tròn (O;R), đường kính AB. Kẻ các tiếp tuyến Ax và By với nửa đường tròn. Tiếp tuyến tại một điểm M trên nửa đường tròn cắt Ax tại C và By tại D. Chứng minh
a) CD = CA + DB và góc COD = \(90^0\)
b) AB là tiếp tuyến của đường tròn đường kính CD
c) Dọi N là giao điểm của AD và BC. Chứng minh MN vuông góc với AB
bạn god rick giải dài nhưng chưa chắc là đúng
a) Xét tứ giác AOMC có
ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối
ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)
Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Ta có: AOMC là tứ giác nội tiếp(cmt)
nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)
hay ˆMAB=ˆOCDMAB^=OCD^
Xét (O) có
CM là tiếp tuyến có M là tiếp điểm(Gt)
CA là tiếp tuyến có A là tiếp điểm(Gt)
Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)
⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)
⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^
Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù)
mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)
và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)
nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800
⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900
mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)
nên ˆCOD=900COD^=900
Xét ΔCOD có ˆCOD=900COD^=900(cmt)
nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)
Xét (O) có
ΔMAB nội tiếp đường tròn(M,A,B∈(O))
AB là đường kính(gt)
Do đó: ΔMAB vuông tại M(Định lí)
Xét ΔAMB vuông tại M và ΔCOD vuông tại O có
ˆMAB=ˆOCDMAB^=OCD^(cmt)
Do đó: ΔAMB∼ΔCOD(g-g)
⇔AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)
hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)