Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn duy khang
Xem chi tiết
Huy Hoang
3 tháng 10 2020 lúc 15:03

O A P T B 1 1 1 m

\(\widehat{A_1}\)là góc nội tiếp chắn cung \(\widebat{PB}\)

\(\Rightarrow\widehat{A_1}=\frac{1}{2}.sđ\widebat{PB}\)

\(\widehat{B_1}\)là góc tạo bởi tiếp tuyến BT và dây BP

\(\Rightarrow\widehat{B_1}=\frac{1}{2}.sđ\widebat{PB}\)

\(\Rightarrow\widehat{A_1}=\widehat{B_1}\left(=\frac{1}{2}sđ\widebat{PB}\right)\)(1)

Xét \(\Delta APO\)có OA = OP = R

\(\Rightarrow\Delta APO\)cân tại O \(\Rightarrow\widehat{A_1}=\widehat{P_1}\)(2)

Từ (1) (2) => \(\widehat{B_1}=\widehat{P_1}\)hay \(\widehat{APO}=\widehat{PBT}\)

Khách vãng lai đã xóa
NGUYỄN DUY KHANG
Xem chi tiết
Mu Mộc Lan
Xem chi tiết
Lê Thị Thu
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
Cao Sinh
20 tháng 1 2022 lúc 15:04

bundefined

b tham khảo ạ

Heri Mỹ Anh
Xem chi tiết
Thiên An
Xem chi tiết
Trần Quốc Đạt
13 tháng 1 2017 lúc 21:21

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

Tấn Hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 9:31

a: Xét (O) có 

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

hay \(\widehat{ADC}=180^0-90^0=90^0\)

b: Ta có: ΔADC vuông tại D

mà DI là đường trung tuyến ứng với cạnh huyền AC

nên DI=IC=IA=AC/2

Xét ΔODI và ΔOAI có

OD=OA

DI=AI

OI chung

Do đó: ΔODI=ΔOAI

Suy ra: \(\widehat{ODI}=\widehat{OAI}=90^0\)

hay ID là tiếp tuyến của (O)

Minh tú Trần
Xem chi tiết
Đỗ Hoàng Diệp Chi
3 tháng 10 2021 lúc 8:54

bạn god rick giải dài nhưng chưa chắc là đúng

Khách vãng lai đã xóa

a) Xét tứ giác AOMC có

ˆCAOCAO^ và ˆCMOCMO^ là hai góc đối

ˆCAO+ˆCMO=1800(900+900=1800)CAO^+CMO^=1800(900+900=1800)

Do đó: AOMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Ta có: AOMC là tứ giác nội tiếp(cmt)

nên ˆMAO=ˆOCMMAO^=OCM^(hai góc cùng nhìn cạnh OM)

hay ˆMAB=ˆOCDMAB^=OCD^

Xét (O) có

CM là tiếp tuyến có M là tiếp điểm(Gt)

CA là tiếp tuyến có A là tiếp điểm(Gt)

Do đó: OC là tia phân giác của ˆAOMAOM^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆAOM=2⋅ˆCOM⇔AOM^=2⋅COM^

Xét (O) có

DM là tiếp tuyến có M là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OD là tia phân giác của ˆMOBMOB^(Tính chất hai tiếp tuyến cắt nhau)

⇔ˆBOM=2⋅ˆMOD⇔BOM^=2⋅MOD^

Ta có: ˆAOM+ˆBOM=1800AOM^+BOM^=1800(hai góc kề bù) 

mà ˆAOM=2⋅ˆCOMAOM^=2⋅COM^(cmt)

và ˆBOM=2⋅ˆMODBOM^=2⋅MOD^(cmt)

nên 2⋅ˆCOM+2⋅ˆMOD=18002⋅COM^+2⋅MOD^=1800

⇔ˆCOM+ˆMOD=900⇔COM^+MOD^=900

mà ˆCOM+ˆMOD=ˆCODCOM^+MOD^=COD^(tia OM nằm giữa hai tia OC,OD)

nên ˆCOD=900COD^=900

Xét ΔCOD có ˆCOD=900COD^=900(cmt)

nên ΔCOD vuông tại O(Định nghĩa tam giác vuông)

Xét (O) có

ΔMAB nội tiếp đường tròn(M,A,B∈(O))

AB là đường kính(gt)

Do đó: ΔMAB vuông tại M(Định lí)

Xét ΔAMB vuông tại M và ΔCOD vuông tại O có

ˆMAB=ˆOCDMAB^=OCD^(cmt)

Do đó: ΔAMB∼ΔCOD(g-g)

AMCO=BMDOAMCO=BMDO(Các cặp cạnh tương ứng tỉ lệ)

hay AM⋅OD=BM⋅OCAM⋅OD=BM⋅OC(đpcm)

Khách vãng lai đã xóa