Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đăng Hiếu
Xem chi tiết
Trần Đăng Hiếu
18 tháng 10 2015 lúc 15:33

Đây là dạng toán quy nạp nha

Trần Đăng Hiếu
18 tháng 10 2015 lúc 15:34

Đây là dạng toán quy nạp nha

Hồ huynh ngân
Xem chi tiết
Hồ huynh ngân
Xem chi tiết
tth_new
Xem chi tiết
Nguyễn Hoàng
13 tháng 1 2019 lúc 19:27

oh hay quá nhỉ

Nguyễn Hoàng
13 tháng 1 2019 lúc 19:31

đề sai

Nguyễn Hoàng
13 tháng 1 2019 lúc 19:31

trời ạ chắc sai rồi thử lại xem n=3

Nguyễn Ngọc Diệp
Xem chi tiết
 Đào Xuân Thế Anh
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Khách vãng lai đã xóa
Phí Mạnh Huy
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Khách vãng lai đã xóa
Đỗ Hương Chi
26 tháng 11 2021 lúc 19:30

???????????????????
 

Khách vãng lai đã xóa
Nguyễn Duy Long
Xem chi tiết
alibaba nguyễn
30 tháng 8 2017 lúc 13:40

Đặt:

\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(\Leftrightarrow2A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{97}+\sqrt{99}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{101}}\)

\(=\frac{1}{2}.\left(\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{101}-\sqrt{99}\right)\)

\(=\frac{1}{2}.\left(\sqrt{101}-\sqrt{1}\right)>\frac{1}{2}.\left(\sqrt{100}-\sqrt{1}\right)\)

\(=\frac{9}{2}\)

\(\Rightarrow A>\frac{9}{4}\)

alibaba nguyễn
30 tháng 8 2017 lúc 13:33

Câu 2/ Ta có:

\(n^{n+1}>\left(n+1\right)^n\)

\(\Leftrightarrow n>\left(1+\frac{1}{n}\right)^n\left(1\right)\)

Giờ ta chứng minh cái (1) đúng với mọi \(n\ge3\)

Với \(n=3\) thì dễ thấy (1) đúng.

Giả sử (1) đúng đến \(n=k\) hay

\(k>\left(1+\frac{1}{k}\right)^k\)

Ta cần chứng minh (1) đúng với \(n=k+1\)hay \(k+1>\left(1+\frac{1}{k+1}\right)^{k+1}\)

Ta có: \(\left(1+\frac{1}{k+1}\right)^{k+1}< \left(1+\frac{1}{k}\right)^{k+1}=\left(1+\frac{1}{k}\right)^k.\left(1+\frac{1}{k}\right)\)

\(< k\left(1+\frac{1}{k}\right)=k+1\)

Vậy có ĐPCM

Songo Han
31 tháng 8 2017 lúc 15:25

bằng 122223

Đoàn Nguyễn Bảo Ngọc
Xem chi tiết
nguyễn thị hà uyên
Xem chi tiết
Hoàng Phú Huy
15 tháng 3 2018 lúc 16:59

 Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11.

Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n. (1). Có: 2^4n=.......6=......5+1=5x +1.

Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên ...

©ⓢ丶κεη春╰‿╯
15 tháng 3 2018 lúc 17:00

Câu trả lời hay nhất:  2^4n = (2^4)^n = ......6( có chữ số tận cùng là 6 
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0) 
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?

mk nghĩ đề bài nó phải thế này chứ : Chứng minh: (2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?-lớp 8

trịnh lâm anh
Xem chi tiết
Nguyễn Ngọc Ánh
14 tháng 5 2019 lúc 21:09

bạn đặt n = 3k . q ( ( q,3)=1) 

rồi xét thấy A sẽ chia hết cho 3 nếu q khác 1 

Lê Đình Vĩ
27 tháng 9 2023 lúc 14:52

ai giải dùm bài này với, giải mãi không ra, thanks