tìm số TN n để phân số 8n+193/4n+3 có giá trị là số tự nhiên
tìm số tự nhiên n để phân số A = 8n+193/4n+3 có giá trị là số tự nhiên
\(\Leftrightarrow4n+3\in\left\{11;17\right\}\)
=>4n=8
hay n=2
Tìm các số tự nhiên n để phân số A=8n+193/4n+3
a) Có giá trị là số tự nhiên.
Tìm số tự nhiên n. Để giá trị của phân số: C = (8n + 193)/(4n + 3) là một số tự nhiên
tìm số tự nhiên n để phân số A= 8n+193/4n+3
a) có giá trị là số tự nhiên
b) là phân số tối giản
Tìm số tự nhiên n để phân số A= 8n+193/4n+3
a) Có giá trị là số nguyên
b) Là phân số tối giản
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
Tìm số tự nhiên n để phân số A = \(\dfrac{8n+193}{4n+3}\) sao cho:
a. Có giá trị là số tự nhiên.
b. Là phân số tối giản
c. Với giá trị nào của n trong khoảng 150 đến 170 thì phân số A rút gọn được?
a: Để A là số tự nhiên thì 8n+6+187 chia hết cho 4n+3
=>\(4n+3\in\left\{1;-1;11;-11;17;-17;187;-187\right\}\)
mà n>0
nên \(n\in\left\{2;46\right\}\)
c: \(A=\dfrac{8n+6+187}{4n+3}=2+\dfrac{187}{4n+3}\)
Để A rút gọn được thì ƯCLN(8n+193;4n+3)<>1
mà 150<=n<=170
nên \(n\in\left\{156;165;167\right\}\)
tìm số tự nhiên n để giá trị của phân số:
C=\(\frac{8n+193}{4n+3}\)là số tự nhiên
Tìm số tự nhiên n để phân số: 8n+193/4n+3
a) Có giá trị là số tự nhiên
b) Là phân số tối giản
c)Với giá trị nào của n trong khoảng 150 đến 170 thì phân số A rút gọn đượ
Tìm số tự nhiên n để phân số: 8n+193/4n+3
a) Có giá trị là số tự nhiên
b) Là phân số tối giản
c)Với giá trị nào của n trong khoảng 150 đến 170 thì phân số A rút gọn được
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)