Tìm n nguyên dương nhỏ nhất sao cho n^2+5n+1 là số nguyên tố
GIÚP MÌNH VỚI!!!!!!!!!!!!!!!!!!!!!!!
tìm số nguyên dương n nhỏ nhất sao cho n^2+5n+1 là số nguyên tố
tìm số nguyên dương n nhỏ nhất sao cho n^2 + 5n+ 1 là số nguyên tố
n=1
vì 12 + 5.1+1 =1+5+1=7 (thỏa mãn vì 7 là số nguyên tố)
Vậy n = 1
ta có
n^2 + 5n + 1
= n ( n+5) + 1
vì 1 là số nguyên tố nên n^2 + 5n + 1 là số nguyên tố
thì n( n+5) là số nguyên tố
=> n (n+5) chia hết cho 1 và n( n+5)
=> .........
Tìm n nguyên dương nhỏ nhất sao cho n^2+5n+1 là số nguyên tố
Tìm n nguyên dương nhỏ nhất sao cho n^2+5n+1 là số nguyên tố
Tìm số nguyên dương n nhỏ nhất sao n^2+5n+1 cho là số nguyên tố. Trả lời: n=.........
n^2+5n+1=n.(n+5)+1
Với n E N thì n+5>1
=> n^2+5n+1 là số nguyên tố <=>n=1
Thử lại thấy đúng,vậy n=1
Tìm số nguyên dương n nhỏ nhất sao cho n2+5n+1 là số nguyên tố
n2+ 5n+ 1= n.n+ 5.n+ 1
= (5+ n). n+ 1 là số nguyên tố
Mà n nguyên dương nhỏ nhất nên (5+ n). n là hợp số
Suy ra (5+ n). n+ 1= 7
(5+ n). n= 6
=> n= 1
Tìm số nguyên dương n nhỏ nhất sao cho 2^n +5n+1 là số nguyên tố. Trả lời:
Tìm số nguyên dương n nhỏ nhất sao cho n^2+5n+1 là số nguyên tố.
Trả lời: ...
Kí hiệu S(n) là tổng các chữ số của một số nguyên dương n. Tìm số nguyên dương n nhỏ nhất sao cho S(n).S(n+1)= 87
Các bạn giúp mình với!
Ta thấy \(87=1.87=3.29\) nên ta xét 2TH
TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)
Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.
TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)
Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)
TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)
Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.
TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:
TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.
TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)
Vậy, số cần tìm là 11999.