Phương trình \(ax^3+11x^2-bx+2=0\) có nghiệm \(x=-1\) khi đó \(a+b=?\)
Phương trình \(ax^3+11x^2-bx+2=0\) có nghiệm \(x=-1\) khi đó \(a+b=?\)
Phương trình \(ax^3+11x^2-bx+2=0\) có nghiệm \(x=-1\) khi đó \(a+b=?\)
(Toán 8 nha, hướng dẫn giúp em với)
em chỉ việc thay x=-1 vào phương trình thôi nhé . Chúc em sang năm mới sẽ có thật nhiều sức khỏe và hok giỏi .
Thay \(x=-1\); ta có:
\(a.\left(-1\right)^3+11\left(-1\right)^2-b.\left(-1\right)+2=0\)
\(\Rightarrow a.\left(-1\right)+11-b.\left(-1\right)+2=0\)
\(\left(a-b\right).\left(-1\right)+13=0\)
\(\left(a-b\right).\left(-1\right)=-13\)
\(\Rightarrow a-b=-\frac{13}{-1}=13\)
Chỉ tính được a-b thôi nhé, không có a+b được!
giả sử pt \(ax^2+bx+c=0\left(a,b,c\ne0\right)\) có 2 nghiệm phân biệt trong đó có đúng 1 nghiệm dương x1 thì phương trình bậc hai \(ct^2+bt+a=0\) cũng có hai nghiệm phân biệt trong đó có \(t_1>0\) thoả mãn \(x_1+t_1\ge2\)
CÁI BÀI NÀY CÂU HỎI LÀ LÀM GÌ VẬY ĐỌC KO HỈU LẮM
phantuananh mk cũng bị cái câu hỏi làm cho @@ ùi
x1 là nghiệm pt
=> \(ax1^2+bx1+c=0\)
<=> \(a+b\cdot\frac{1}{x1}+c\cdot\left(\frac{1}{x1}\right)^2=0\Leftrightarrow ct1^2+bt1+a=0\) ( t1 = 1/x1)
Xet \(x1+t1=x1+\frac{1}{x1}\ge2\) ( BĐT cô - si , x1 > 0 )
Tìm số b và nghiệm thứ hai của các phương trình
a,x2-5x+b=0,Nếu có một nghiệm x=5
b,x2+bx-15=0 ,Nếu có 1 nghiệm x=3
a) Thay x = 5 vào thì phương trình trở thành \(5^2-5.5+b=0\)
\(\Rightarrow25-25+b=0\Rightarrow b=0\)
Lúc đó phương trình trở thành \(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là 0
b) Thay x = 3 vào thì phương trình trở thành \(3^2+3b-15=0\)
\(\Rightarrow3b-6=0\Leftrightarrow b=2\)
Lúc đó phương trình trở thành \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
Dễ dàng suy ra nghiệm còn lại của phương trình là -5
a) Vì \(x=5\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=5\)vào phương trình ta được:
\(5^2-5.5+b=0\)\(\Leftrightarrow25-25+b=0\)\(\Leftrightarrow b=0\)
Thay \(b=0\)vào phương trình ta được:
\(x^2-5x=0\)\(\Leftrightarrow x\left(x-5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy \(b=0\)và nghiệm thứ 2 của phương trình là \(x=0\)
b) Vì \(x=3\)là 1 nghiệm của phương trình
\(\Rightarrow\)Thay \(x=3\)vào phương trình ta được:
\(3^2+3b-15=0\)\(\Leftrightarrow9+3b-15=0\)
\(\Leftrightarrow3x-6=0\)\(\Leftrightarrow3b=6\)\(\Leftrightarrow b=2\)
Thay \(b=2\)vào phương trình ta được:
\(x^2+2x-15=0\)\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy \(b=2\)và nghiệm thứ 2 của phương trình là \(x=-5\)
giả sử pt \(ax^2+bx+c=0\left(a,b,c\ne0\right)\) có 2 nghiệm phân biệt trong đó có đúng 1 nghiệm dương x1 thì phương trình bậc hai \(ct^2+bt+a=0\) cũng có hai nghiệm phân biệt trong đó có \(t>0\) thoả mãn \(x_1+t_1\ge2\)
các bạn giúp mk với nha , thanks
\(PT:ax^2+bx+c=0\) (1) có 2 nghiệm pb có dúng 1 nghiệm dương(x1) => ac<0 ; \(\sqrt{\Delta}=b^2-4ac>0\)
\(PT:ct^2+bt+a=0\) (2) có ac<0 => \(\sqrt{\Delta}=b^2-4ac>0\) (theo trên) => (2) cũng có 2 nghiệm pb ,trái dấu ( 1 dương = t1 )
ta có : x1>0 ; t1 >0 nên :
+ \(x_1.t_1=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa>0;c<0\right)\)
+ \(x_1.t_1=\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa<0;c>0\right)\)
=> \(x_1+t_1\ge2\sqrt{x_1.t_1}=2\)
Cho ba số a,b,c khác 0 thỏa mãn a/7 + b/5 + c/3 =0
Chứng minh rằng phương trình ax4 +bx2 + c = 0 có ít nhất 1 nghiệm thuộc (0;1)
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!