Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ipin Phạm
Xem chi tiết
Ngô Tấn Đạt
3 tháng 1 2018 lúc 16:32

\(x^2-y^2+2x-4y-10=0\\ \Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\\ \Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

Đề có sao k

 Mashiro Shiina
3 tháng 1 2018 lúc 16:44

=0 chứ

 Mashiro Shiina
3 tháng 1 2018 lúc 16:53

Thì thôi t ủng hộ cách làm,thấy bạn kia làm ngán quá :v

\(x^2-y^2+2x-4y-10=0\)

\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=7\)

\(\Rightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)

Dễ thấy: \(7=1.7=7.1=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)

Dễ r :v

Khiêm Nguyễn Gia
Xem chi tiết
Xyz OLM
15 tháng 8 2023 lúc 12:07

Có : x2 - y2 + 2x - 4y - 10 = 0

<=> (x + 1)2 - (y + 2)2 = 7

<=> (x + y + 3)(x - y - 1) = 7

Lập bảng ta được 

x + y + 3 7 1 -1 -7
x - y - 1 1 7 -7 -1
x 3 3 -5 -5
y 1 -5 1 -5

Vì x,y \(\inℕ^∗\) nên (x;y) = (3;1) là giá trị thỏa mãn

Đỗ Thị Hải Yến
Xem chi tiết
alibaba nguyễn
14 tháng 2 2017 lúc 11:32

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=13\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=13\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=13\)

Tới đây thì đơn giản rồi nhé

NGUYỄN THẾ HIỆP
14 tháng 2 2017 lúc 11:43

pt <=> \(\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)

Mặt khác x,y>0 => x+y+3>x-y-1 và x+y+3>0

Nên ta có cặp nghiệm duy nhất sau: \(\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x+y=4\\x-y=2\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)

alibaba nguyễn
14 tháng 2 2017 lúc 11:46

Đúng rồi \(\left(x+y+3\right)\left(x-y-1\right)=7\)

Nhầm sorry nhá

Trương Thanh Nhân
Xem chi tiết
Nguyễn Nhật Minh
16 tháng 2 2019 lúc 20:27

\(x^2-y^2+2x-4y-10=0\)\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)\(\Leftrightarrow\left[\left(x+1\right)-\left(y+2\right)\right]\left[\left(x+1\right)+\left(y+2\right)\right]=7\)\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7.\)

Mà x, y nguyên dương nên x - y - 1 và x + y + 3 nguyên => x - y - 1 và x + y + 3 là ước nguyên của 7. Do đó ta có bảng sau:

x - y - 11-17-7
x + y + 37-71-1
x - y208-6
x + y4-10-2-4
x3-53-5
y1-5-51
Kết luậnthoả mãnx, y < 0 (loại)y < 0 (loại)x < 0 (loại)

Vậy với x = 3, y = 1 thì thoả mãn \(x^2-y^2+2x-4y-10=0.\)

zxc bgd
Xem chi tiết
Ngu Ngu Ngu
2 tháng 4 2017 lúc 18:54

Ta có:

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Vì \(x,y\) nguyên dương 

Nên \(x+y+3>x-y-1>0\)

\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

Vậy phương trình có nghiệm nguyên dương duy nhất \(\left(x,y\right)=\left(3;1\right)\)

Vũ Mạnh PHi
Xem chi tiết
nhok sư tử
8 tháng 6 2017 lúc 21:28

=>xy(1-1+2-4)=10

=>xy(-2)=10

=>xy=-5

tự tìm

TheRedSuns
8 tháng 6 2017 lúc 21:30

=> xy( 1-1+2-1) = 10

=> xy(-2) = 10

=> xy = -5

Còn nữa

Đỗ Đức Đạt
21 tháng 8 2017 lúc 14:50

Sự trở lại của Đạt

no name
Xem chi tiết
viet cute
7 tháng 3 2017 lúc 23:07

CHO TEN ROI NOI

no name
7 tháng 3 2017 lúc 23:34

ngọc anh ạ

Thắng Nguyễn
8 tháng 3 2017 lúc 11:39

\(x^2-y^2+2x-4y-10=0\)

\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)

\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)

\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Nguyễn Ngọc  Khánh
Xem chi tiết
Nguyễn Thế Kỳ
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 8 2018 lúc 16:12

Bài 1 :

Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy \(GTNN\) của \(A\)\(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 8 2018 lúc 16:18

Bài 2 :

Câu a : \(x^2-6x+y^2-4y+13=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)

Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy \(x=3\) and \(y=2\)

Câu b : \(4x^2-4x+y^2+6y+10=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)

Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{2}\)\(y=-3\)