tìm nghiệm nguyên dương của phương trình 7(x+1)+3y=2xy
tìm nghiệm nguyên dương của phương trình :
x2+2y2+2xy +3y-4=0
Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)
Coi phương trình trên có ẩn là x.
Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)
\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)
Thay vào từng giá trị nguyên của y để tìm x=)
tìm nghiệm nguyên dương của phương trình : \(x^2-3y^2+2xy-2x-10y+4=0\)
=> (x2 + 2xy + y2) - 2x - 10y - 4y2 + 4 = 0
<=> (x+y)2 - 2.(x+y) + 1 - (4y2 + 8y + 4) + 7 = 0
<=> (x+ y - 1)2 - (2y + 2)2 = -7
<=> (x + y - 1 + 2y + 2).(x + y - 1 - 2y - 2) = -7
<=> (x + 3y + 1).(x - y - 3) = -7
Vì x; y nguyên nên x + 3y + 1 \(\in\) Ư(-7) = {7;-7;1;-1} .Hơn nữa; x; y dương nên x + 3y + 1 > 1
=> x + 3y + 1 = 7
=> x - y - 3 = -1
=> (x+3y+1) - (x - y - 3) = 4y + 4 = 8 => y = 1
=> x = 7 - 1 - 3y = 3
Vậy x = 3; y = 1
Coi phương trình bậc 2 ẩn x tham số y ta có :
x^2+2(y-1)x-(3y^2+10y-4)=0
Để phương trình nghiệm nguyên x thì điều kiện cần là phải là số chính phương
Ta có := (y-1)^2+3y^2+10y-4=4y^2+8y-3=k^2(k thuộc N)
=>(2y+2)^2-k^2=7
<=>(2y+2-k)(2y+2+k)=(-7)(-1)=1.7
Vì 2y+2+k > 2y +2-k nên ta có bảng sau:
2y+2+k | 7 | -1 |
2y+2-k | 1 | -7 |
y | 1 | -3 |
k | 3 | -5 ( loại) |
Voi y = 1 ta co :x^2+2(y-1)x-(3y^2+10y-4)=0
Trở thành:x^2 - 9=0=>x=3;x=-3
Vấp pt đã cho ở 2 nghiệm nguyên là (3;1) và (-3;1)
tìm nghiệm nguyên của phương trình: x^2 - 2xy + 4x - 3y + 1 = 0
Tìm nghiệm nguyên của phương trình:
1. 2xy-x+y = 3
2. 5x-3y = 2xy-11
1. \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)
\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)
Ta lập bảng giá trị:
\(2y-1\) | 1 | 5 | -1 | -5 |
\(2x+1\) | 5 | 1 | -5 | -1 |
\(x\) | 2 | 0 | -3 | -1 |
\(y\) | 1 | 3 | 0 | -2 |
Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)
2xy-x+y=3
2(2xy-x+y)=2.3
4xy-2x+2y=6
2x(2y-1)-2y=6
2x(2y-1)-2y+1=6+1
2x(2y-1)-(2y-1)=7
(2x-1)(2y-1)=7
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
tìm các nghiệm nguyên dương của các phương trình
a/x^+xy+y^2
b/x^2+xy+y^2=x+y
c/x^2-3xy+2y^2=3y
d/x^2-2xy+5y^2=y+1
Tìm tất cả các nghiệm nguyên dương của phương trình :\(2x^2y-1=x^2+3y\)
\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)
\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)
\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)
\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)
\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)
- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)
- Với \(x=2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
1. Tìm nghiệm nguyên của phương trình:
\(x^2+2y^2-2xy+3x-3y+2=0\)
2. Tìm tất cả các số nguyên x,y thõa mãn phương trình
\(xy^3+y^2+4xy=6\)
3.Tìm nghiệm nguyên dương của phương trình
\(x^2+\left(x+y\right)^2=\left(x+9\right)^2\)
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
1)
f(x) =x^2 -(2y -3)x +2y^2 -3y+2 =0
cần x nguyên
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
<=> 4y^2 -12y +9 -8y^2 +12y -8 =k^2
<=> -4y^2 +1 =k^2
<=> k^2 +4y^2 =1
=> y=0
với y =0 => x =-1 ; x =-2
kết luận
(x,y) =(-1;0) ; (-2;0)
2)
<=> y(xy^2 +y+4x) =6
xét g(y) =xy^2 +y+4x phải nguyên
=> $\Delta$ (y) =1 -16x^2 =k^2
k^2 +16x^2 =1
x nguyên => x =0 duy nhất
với x = 0
f(y) = y^2 =6 => vô nghiệm nguyên
<=> y(xy^2 +y+4x) =16
hệ nghiệm nguyên
y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16} (1)
xy^2 +y+4x ={-1,-2,-4,-8,-16,16,8,4,2, 1} (2)
từ (2) <=>xy^2 +y+4x =a
với a ={-1,-2,-4,-8,-16,16,8,4,2,1} tương ứng y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16}
x =`$\frac{a-y}{y^2 +4}$`
a-y = { 15 , 6, 0, -6,-15,15, 6, 0, -6,-15 }
y^2 +4 = { 260,68, 20, 8, 5, 5, 8,20, 68,260 }
a-y=0 hoặc cần |a-y| >= y^2 +4
=> có các giá tri x nguyên
x ={0, -3,3,0}
y ={-4,-1,1,4}
kết luận nghiệm
(x,y) =(0,-4) ; (-3;-1) ;(3;1); (0;4)
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2