rút gọn phân thức: \(\dfrac{4+8y}{3y^2+6y^3}\)
Rút gọn phân thức \(\dfrac{x^2-9y^2}{x^2+xy-6y^2}\)
\(\dfrac{x^2-9y^2}{x^2+xy-6y^2}=\dfrac{\left(x-3y\right)\left(x+3y\right)}{\left(x-2y\right)\left(x+3y\right)}=\dfrac{x-3y}{x-2y}\)
Rút gọn phân thức
\(\dfrac{3^{3x}-3^{3y}}{3^x+3^y}\)
\(\dfrac{2^{4m}-2^{4n}}{2^{2n}+2^{2m}}\)
b) Ta có: \(\dfrac{2^{4m}-2^{4n}}{2^{2n}+2^{2m}}\)
\(=\dfrac{4^{2m}-4^{2n}}{4^n+4^m}\)
\(=\dfrac{\left(4^m+4^n\right)\left(4^m-4^n\right)}{4^n+4^m}\)
\(=4^m-4^n\)
rút gọn phân thức \(\dfrac{x^2-xy-6y^2}{x^2-9y^2}\) thu được kết quả là
\(\dfrac{x^2-xy-6y^2}{x^2-9y^2}=\dfrac{\left(x-3y\right)\left(x+2y\right)}{\left(x-3y\right)\left(x+3y\right)}=\dfrac{x+2y}{x+3y}\)
Rút gọn các phân thức: \(\dfrac{\left(x-y\right)^3-3xy.\left(x+y\right)+y^3}{x-6y}\)
BÀI 6 :rút gọn phân thức
\(\dfrac{x^3+3x^3+3x+1}{x^2+x}\)
b)\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
c)\(\dfrac{x^2+4x+4}{2x+4}\)
d)\(\dfrac{(x-1)(-x-2)}{x+2}\)
e)\(\dfrac{x^2-y^2}{x+y}\)
f)\(\dfrac{3x^2+4xy^2}{6x+8y}\)
g)\(\dfrac{-3x^2-6x}{4-x^2}\)
BÀI 7 :quy đồng mẫu thức các phân thức
\(\dfrac{2}{5x^3y^2}và \dfrac{3}{4xy}\)
b)\(\dfrac{x}{x^2-2xy+y^2} và \dfrac{x}{x^2-xy}\)
c)\(\dfrac{1}{x+2};\dfrac{2}{2x+4}và \dfrac{3}{3x+6}\)
d)\(\dfrac{1}{x+3};\dfrac{2}{2x-6}và \dfrac{3}{3x-9}\)
6:
a: ĐKXĐ: x<>0
\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)
\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)
b: ĐKXĐ: x<>1
\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)
c: ĐKXĐ: x<>-2
\(\dfrac{x^2+4x+4}{2x+4}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)
\(=\dfrac{x+2}{2}\)
d: ĐKXĐ: x<>-2
\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)
\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)
e: ĐKXĐ: x<>-y
\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)
g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)
\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)
7:
a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)
\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)
b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)
\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)
c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)
d:
\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)
\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)
Bài 1)Phân tích đa thức sau thành nhân tử
3a-3b+a2-ab
Bài 2)Rút gọn phân thức sau
\(\dfrac{3x^3y+3xy^3}{x^2+y^2}\)
1) 3a - 3b + a^2 - ab
= 3(a - b) + a(a - b)
= (a - b)(a + 3)
2) = 3xy(x^2 + y^2)/(x^2 + y^2) = 3xy
A = 7y^3 + 2y^2 - 3y^4 - 2y^2 - 9y^3 + 2
B = 3y^2 + 6y^3 - 3y - 3 + 7y^4 - 4y^3
a) Rút gọn
b) Tính A+B và A-B
a: \(A=-2y^3-3y^4+2\)
\(B=7y^4+2y^3+3y^2-3y-3\)
b: \(A+B=4y^4+3y^2-3y-1\)
\(A-B=-10y^4-4y^3-3y^2+3y+5\)
rút gọn phân thức sau
\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)
Ta có: \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\dfrac{\left(x^3+y^3\right)\left(x^3+y^3\right)}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}\)
\(=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}=\dfrac{x^2-xy+y^2}{x^3+xy^2-x^2y-y^3}\)
Rút gọn biểu thức A
A=(\(\dfrac{4\sqrt{y}}{2+\sqrt{y}}+\dfrac{8y}{4-y}\)) : (\(\dfrac{\sqrt{y}-1}{y-2\sqrt{y}}-\dfrac{2}{\sqrt{y}}\))
với y>0; y≠4; y≠9
\(A=\left(\dfrac{4\sqrt{y}}{2+\sqrt{y}}+\dfrac{8y}{4-y}\right):\left(\dfrac{\sqrt{y}-1}{y-2\sqrt{y}}-\dfrac{2}{\sqrt{y}}\right)\)
\(A=\dfrac{4\sqrt{y}\left(2-\sqrt{y}\right)+8y}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}:\dfrac{\sqrt{y}-1-2\left(\sqrt{y}-2\right)}{\sqrt{y}\left(\sqrt{y}-2\right)}\)
\(A=\dfrac{8\sqrt{y}+4y}{\left(2+\sqrt{y}\right)\left(2-\sqrt{y}\right)}.\dfrac{\sqrt{y}\left(\sqrt{y}-2\right)}{-\sqrt{y}+3}\)
\(A=\dfrac{4\sqrt{y}}{2-\sqrt{y}}.\dfrac{\sqrt{y}\left(2-\sqrt{y}\right)}{\sqrt{y}-3}\)
\(A=\dfrac{4y}{\sqrt{y}-3}\)
Chúc bạn học tốt ^^