Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tranthihienmai

Những câu hỏi liên quan
Nguyễn Thục Trinh
Xem chi tiết
Trần Đình Dủng
20 tháng 2 2020 lúc 8:59

chúc bạn học giỏi

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
3 tháng 6 2022 lúc 15:18

a: \(\Leftrightarrow x^2+6x+9+x^2-4-2x-2=7\)

\(\Leftrightarrow2x^2+4x-4=0\)

\(\Leftrightarrow x^2+2x-2=0\)

\(\Leftrightarrow x^2+2x+1-3=0\)

\(\Leftrightarrow\left(x+1\right)^2=3\)

hay \(x\in\left\{-\sqrt{3}-1;\sqrt{3}-1\right\}\)

b: \(\Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\)

\(\Leftrightarrow2x^2-x-2x^2+x+6=0\)

=>6=0(vô lý)

c: \(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)

=>x=-2 hoặc x=2

đ: \(\Rightarrow2x^2-2x-5x+5=0\)

=>(x-1)(2x-5)=0

=>x=1 hoặc x=5/2

UZUMAKI NARUTO
Xem chi tiết
Phương An
30 tháng 11 2016 lúc 9:17

\(2x^2-7x+5=0\)

\(2x^2-2x-5x+5=0\)

\(2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)

\(x\left(2x-5\right)-4x+10=0\)

\(x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x-2\right)=0\)

\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)

\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)

\(x^2-25-x^2+2x=15\)

\(2x=15+25\)

\(2x=40\)

\(x=\frac{40}{2}\)

\(x=20\)

\(x^2\left(2x-3\right)-12+8x=0\)

\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2+4\right)=0\)

\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))

\(2x=3\)

\(x=\frac{3}{2}\)

\(x\left(x-1\right)+5x-5=0\)

\(x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)

\(4x^2-12x+9-4x^2+4x=5\)

\(-8x=5-9\)

\(-8x=-4\)

\(x=\frac{4}{8}\)

\(x=\frac{1}{2}\)

\(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(5x-2x^2+2x^2-2x=13\)

\(3x=13\)

\(x=\frac{13}{3}\)

\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)

\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)

\(\left(2x-5\right)\left(x+11\right)=0\)

\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)

T.Thùy Ninh
21 tháng 6 2017 lúc 9:34

\(a,2x^2-7x+5=0\Leftrightarrow2x^2-2x-5x+5=0\Leftrightarrow2x\left(x-1\right)-5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2,5\end{matrix}\right.\)\(b,x\left(2x-5\right)-4x+10=0\Rightarrow x\left(2x-5\right)-2\left(2x-5\right)=0\Leftrightarrow\left(x-2\right)\left(2x-5\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=2,5\end{matrix}\right.\)\(c,\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\Leftrightarrow x^2-25-x^2+2x-15=0\Leftrightarrow2x-40=0\Rightarrow2x=40\Rightarrow x=20\)\(d,x^2\left(2x-3\right)-12+8x=0\Rightarrow2x^3-3x^2-12+8x=0\Leftrightarrow2x^3+8x-3x^2-12=0\Leftrightarrow2x\left(x^2+4\right)-2\left(x^2+4\right)=0\Leftrightarrow\left(2x-2\right)\left(x^2+4\right)=0\Rightarrow\left[{}\begin{matrix}2x-2=0\\x^2+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=2\\x^2=-4\end{matrix}\right.\Rightarrow x=1\)

thằng việt
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 20:39

a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

Ladonna Xavia
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 14:14

1: =>x+1/2=0 hoặc 2/3-2x=0

=>x=-1/2 hoặc x=1/3

2: =>7/6x=5/2:3,75=2/3

=>x=2/3:7/6=2/3*6/7=12/21=4/7

3: =>2x-3=0 hoặc 6-2x=0

=>x=3 hoặc x=3/2

4: =>-5x-1-1/2x+1/3=3/2x-5/6

=>-11/2x-3/2x=-5/6-1/3+1

=>-7x=-1/6

=>x=1/42

Nguyễn Văn Khương
23 tháng 4 2023 lúc 20:57
cho A=1/101+1/102+1/103+...+1/199+1/200 chứng minh 1/2 <A<1
Ha My
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 3 2020 lúc 22:09

a/ Đặt \(\left|x\right|=t\ge0\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x\right|=2\Rightarrow x=\pm2\)

b/ \(\Leftrightarrow\left(x+1\right)^2+\left|x+1\right|-6=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+t-6=0\Rightarrow\left[{}\begin{matrix}t=-3\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\left|x+1\right|=2\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

c/ \(\Leftrightarrow\left(x+1\right)^2-5\left|x+1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2-5t+4=0\Rightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=1\\\left|x+1\right|=4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=4\\x+1=-4\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
13 tháng 3 2020 lúc 22:13

d. \(\Leftrightarrow\left(x-1\right)^2+5\left|x-1\right|+4=0\)

Đặt \(\left|x+1\right|=t\ge0\Rightarrow t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=-4\left(l\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

e. \(\Leftrightarrow\left(x-2\right)^2+2\left|x-2\right|-3=0\)

Đặt \(\left|x-2\right|=t\ge0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)

f. \(\Leftrightarrow\left(2x-5\right)^2+4\left|2x-5\right|-12=0\)

Đặt \(\left|2x-5\right|=t\ge0\)

\(\Rightarrow t^2+4t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-6\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|2x-5\right|=2\Rightarrow\left[{}\begin{matrix}2x-5=2\\2x-5=-2\end{matrix}\right.\)

Khách vãng lai đã xóa
trần thị hoàng yến
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Đường Quỳnh Giang
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

Mỳ tôm sủi cảoo
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 18:49

a: (2x+1)(3-x)(4-2x)=0

=>(2x+1)(x-3)(x-2)=0

hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)

b: 2x(x-3)+5(x-3)=0

=>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

c: =>(x-2)(x+2)+(x-2)(2x-3)=0

=>(x-2)(x+2+2x-3)=0

=>(x-2)(3x-1)=0

=>x=2 hoặc x=1/3

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

e: =>(2x+5+x+2)(2x+5-x-2)=0

=>(3x+7)(x+3)=0

=>x=-7/3 hoặc x=-3

f: \(\Leftrightarrow2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)

Bạch An Nhiên
Xem chi tiết
lê thị hương giang
14 tháng 11 2017 lúc 20:28

1) Tìm x và y biết

a) (2x+1)2 + y2 = 0

Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)

Để \(\left(2x+1\right)^2+y^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)

b) x2 + 2x + 1 + (y-1)2 = 0

\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)

Lập luận tương tự câu a ,ta có :

\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

c) x2 - 2x + y2 + 4y + 5 = 0

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

Lập luận tương tự 2 câu trên

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Duc Thang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 9 2020 lúc 19:58

( 2x - 3 )( x + 1 ) - 2x2 + 6x = 0

<=> 2x2 - x - 3 - 2x2 + 6x = 0

<=> 5x - 3 = 0

<=> 5x = 3

<=> x = 3/5

( x2 - x + 1 )( x - 3 ) - x3 + 4x2 = 0

<=> x3 - 4x2 + 4x - 3 - x3 + 4x2 = 0

<=> 4x - 3 = 0

<=> 4x = 3

<=> x = 3/4

( x2 - 2 )( x2 + 2 ) - x4 - 2x + 5 = 0

<=> ( x2 )2 - 4 - x4 - 2x + 5 = 0

<=> x4 + 1 - x4 - 2x = 0

<=> 1 - 2x = 0

<=> 2x = 1

<=> x = 1/2

( x - 3 )( x2 - 3x + 2 ) - ( x2 - 2x - 7 )( x - 2 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - ( x3 - 4x2 - 3x + 14 ) + 2x2 - 2x = 0

<=> x3 - 6x+ 11x - 6 - x3 + 4x2 + 3x - 14 + 2x2 - 2x = 0

<=> 12x - 20 = 0

<=> 12x = 20

<=> x = 20/12 = 5/3

Khách vãng lai đã xóa
ミ★Ƙαї★彡
1 tháng 9 2020 lúc 20:13

a, \(\left(2x-3\right)\left(x+1\right)-2x^2+6x=0\)

\(\Leftrightarrow2x^2+2x-3x-3-2x^2+6x=0\Leftrightarrow5x-3=0\Leftrightarrow x=\frac{3}{5}\)

b, \(\left(x^2-x+1\right)\left(x-3\right)-x^3+4x^2=0\)

\(\Leftrightarrow x^3-3x^2-x^2+3x+x-3-x^3+4x^2=0\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)

c ; d tương tự nhé ! 

Khách vãng lai đã xóa