Chưng minh rằng :\(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}<1\)
Chưng minh rằng :
\(\frac{1.2-1}{2\text{!}}+\frac{2.3-1}{3\text{!}}+\frac{3.\text{4}-1}{\text{4}\text{!}}+...+\frac{99.100-1}{100\text{!}}< 2\)
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
Vậy \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\left(đpcm\right)\)
Chưng minh rằng:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}>10\)
Ta có:
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(......................\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}=\frac{1}{10}\)
Cộng theo vế ta có: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{99}{10}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{99}{10}+\frac{1}{10}=\frac{100}{10}=10\)
chưng minh rằng \(\frac{1}{^{2^2^{ }}}+\frac{\frac{ }{1}}{3^2}+\frac{\frac{ }{1}}{4^2}+...............+\frac{\frac{ }{1}}{50^2}<\frac{3}{4}\)
A = 1/2.2 + 1/3.3 +......+ 1/50.50
A < 1/1.2 + 1/2.3 +......+ 1/49.50
A < 1 - 1/2 + 1/2 - 1/3 +.....+ 1/49 - 1/50
A < 1 - 1/50
A < 49/50 < 3/4
=> A < 3/4 (đpcm)
Hình như bạn Killua giải sai thì phải.. 49/50 > 3/4 chứ
Theo mình thì bài này nên giữ nguyên phân số 1/2^2( vì nó bằng 1/4)
Xét : B = 1/3^2 + 1/4^2 +...+ 1/50^2
=> B < 1/2.3 + 1/3.4 +...+ 1/49.50
=> B< 1/2-1/3+1/3-1/4+...+1/49-1/50
=> B < 1/2-1/50 < 1/2
Suy ra A < 1/2^2 + 1/2 = 3/4
Vậy A< 3/4
1)chứng minh rằng A = \(\frac{1}{\sqrt{1}}+\frac{2}{\sqrt{2}}+....+\frac{100}{\sqrt{100}}>10\)
bài 2: với a,b>0. chưng minh rắng \(\frac{a+b}{2}>\sqrt{a+b}\)
1) \(\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
=> \(\frac{1}{\sqrt{1}}+\frac{2}{\sqrt{2}}+....+\frac{100}{\sqrt{100}}>\frac{100}{\sqrt{100}}=10\)
2) Xét hiệu: \(\frac{a+b}{2}-\sqrt{ab}=\frac{a+b-2\sqrt{ab}}{2}=\frac{a-\sqrt{ab}-\sqrt{ab}+b}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)
=> \(\frac{a+b}{2}\ge\sqrt{ab}\)
Vậy....
a) đặt A=vế trái ,sau khi rút gọc tử và mẫu của từng số hạng ta đc
A=\(\sqrt{1}\)+\(\sqrt{2}\)+\(\sqrt{3}\)+...+\(\sqrt{100}\)
vì \(\sqrt{100}\)=10
\(\sqrt{1}\)>0
\(\sqrt{2}\)>0
...
\(\sqrt{99}\)>0
cộng lại ta sẽ đc A>0
b)
(a-b)2>=0
=>a2+b2>=2ab
=>a2+2ab+b2>=2ab+2ab
=>(a+b)2>=4ab
=>a+b>=2.\(\sqrt{ab}\) với mọi a,b>0
=>dpcm (chia cả 2 vế cho 2)
Chưng minh rằng :
C= 1-\(\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2014^2}>\frac{1}{2014}\)
Giup mk vs nha!<3<3<3
1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)
sửa đề câu 1 :
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=1-\frac{1}{100!}< 1\)
sửa đề câu 2
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
Giả sử \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(\Rightarrow100=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}+1+\frac{1}{2}+...+\frac{1}{100}\)
\(\Rightarrow100=1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{2}{3}\right)+...+\left(\frac{99}{100}+\frac{1}{100}\right)\)
\(\Rightarrow100=1+1+1+...+1\) (100 chữ số 1)
\(\Rightarrow100=100\)
Vậy \(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{99}{100}\)
Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)
=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)
\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...