chưng minh rằng \(\frac{1}{^{2^2^{ }}}+\frac{\frac{ }{1}}{3^2}+\frac{\frac{ }{1}}{4^2}+...............+\frac{\frac{ }{1}}{50^2}<\frac{3}{4}\)
Chưng minh rằng :
C= 1-\(\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2014^2}>\frac{1}{2014}\)
Giup mk vs nha!<3<3<3
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{99}{100}\)
Chứng minh rằng:
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
chứng minh rằng:
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)=\frac{1}{2}+\frac{1}{3}+\frac{3}{4}+....+\frac{99}{100}\)
Chứng minh rằng:
\(100-\left(1+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
Chứng minh rằng
\(100\)\(-(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100})=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)\(\frac{99}{100}\)
a, Chưng tỏ rằng:
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)< 1
chứng minh rằng:100-\(\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)