Tính : A = 1 + 4 + 9 + 16 + .... + 81
Tính một cách hợp lý :
a, 64 . 16 + 81 . 84 + 17. 16 ;
b, 32 . 19 + 8 . 4 ;
c. 2 . 19 . 6 + 3.37 . 4 + 44 . 2 . 6 ;
d, 1 + 5 + 9 + ... + 81
a,=16.(64+17)+81.84
=16.81+81.84
=81(16+84)
=81.100=8100
b,=32.19+32
=32.(19+1)
=32.20=640
c,=12.19+12.37+44.12
=12.(19+37+44)
=12.100=1200
d, Khoảng cách là:
5-1=4;9-5=4
Số số hạng là:
(81-1):4+1=21(số)
Tổng dãy số là:
(81+1).21:2=861
a
\(\text{=16.(64+17)+81.84}\)
\(\text{=16.81+81.84}\)
\(\text{ =81.(16+84)}\)
\(\text{=81.100=8100}\)
b
\(\text{=32.19+32}\)
\(\text{ =32.(19+1)}\)
\(\text{ =32.20=640}\)
c
\(\text{=12.19+12.37+44.12}\)
\(\text{ =12.(19+37+44)}\)
\(\text{ =12.100}\)
\(=1200\)
d
Có tất cả số hạng là
\(\text{( 81 - 1 ) : 4 + 1 = 21 (số )}\)
Tổng là
\(\text{( 81 + 1 ) x 21 : 2 = 861}\)
A = 1 + 4 + 9 + 16 + 25 + ... + 64 + 81 + 100
tính A
A = 1 + 4 + 9 + 16 +....+ 64 + 81 + 100
=>A = 1 + 1 + 3 + 1 + 8 +...+ 1 + 63 + 1 + 80 + 1 + 99
=>A = 1 + 1 + ..... + 1 + 3 + 8 + 14 +....+80 + 99
Bạn tự tìm kết quả nhé
Hok tốt
A=(1+9)+(4+16)+(9+81)+(16+64)+(25+36+49+100)
A=10+20+90+80+(61+49+100)
A=10+20+90+80+110+100
A=(100+10)+(20+90)+80+110
A=110+110+110+80
A=(110.3)+80
A=330+80
A=410
t i c k cho mình nha
bạnnnnnnnnnnnnnnnnnnnnn
Nêu tính chất của dãy số sau
A = { 1 ; 4 ; 9 ; 25 ; 16 ; 49 ;36 ; 81 ; ... }
\(A=\left\{x\left|x=n^2\right|n\in N;1\le n\le7\right\}\)
dãy số có nhầm lẫn ko bn ??
quy luật có hơi khác so với các bài mà mình đã học từ lớp 1-->7??
A={1;4;9;25;16;49;36;81;...} có phải 16 ;25;36;49 ??
tính nhanh : 1/4 + 1/9 + 1/16 + ... + 1/81 + 1/100
tính nhanh
a) 1/2+1/4+1/8+1/16+1/32
b) 1/3+1/9+1/27+1/81+1/243+1/729
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)
2 \(\times\) A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)
2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)
A = 1 - \(\dfrac{1}{32}\)
A = \(\dfrac{31}{32}\)
B = \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) + \(\dfrac{1}{243}\) + \(\dfrac{1}{729}\)
3 \(\times\)B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) + \(\dfrac{1}{243}\)
3 \(\times\) B - B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) + \(\dfrac{1}{243}\) -(\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+...+\(\dfrac{1}{729}\))
2B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) + \(\dfrac{1}{243}\) - \(\dfrac{1}{3}\) - \(\dfrac{1}{9}\)-\(\dfrac{1}{27}\)-...- \(\dfrac{1}{729}\)
2B = 1 - \(\dfrac{1}{729}\)
2B = \(\dfrac{728}{729}\)
B = \(\dfrac{728}{729}\) : 2
B = \(\dfrac{364}{729}\)
tính
1-4+9-16+...+81-100
Viết mỗi tập hợp sau bằng cách nêu tính chất đặc trưng:
a) A = { 0; 1; 2; 3; 4 }
b) B = { 0; 4; 8; 12; 16 }
c) C = { -3; 9; -27; 81 }
d) D = { 9; 36; 81; 144 }
e) E = { 2; 3; 5; 7; 11 }
f) F = { 3; 6; 9; 12; 15 }
a) \(A=\left\{x\in N|0\le x\le4\right\}\)
b) \(B=\left\{x\in N|x=4k;0\le k\le4;k\in N\right\}\)
c) \(C=\left\{x\in Z|x=\left(-3\right)^k;1\le k\le4;k\in N\right\}\)
d) \(D=\left\{x\in N|x=k^2;k=3a;1\le a\le4;a\in N\right\}\)
Tính(1/4-1).(1/9-1).(1/16-1)....(1/81-1).(1/100-1)
\(=\frac{1}{1.3}.\frac{1}{2.4}...\frac{1}{9.11}=\frac{1}{1.2.3^2...9^2.10.11}\)
Tính B= ( 1/4 - 1 ) ( 1/9 - 1 ) ( 1/16 - 1 )..... ( 1/81 - 1 ) ( 1/100 - 1 )