cho tam giác abc cân tại a có bc=2 cm, ab=4cm, đường phân giác góc b cắt ac tại e. đường vuông góc với be tại b cắt ac kéo dài ở p. tính pc
CHO TAM GIÁC ABC CÂN TẠI A CÓ AB=4CM , BC=2 CM ĐƯỜNG PHÂN GIÁC GÓC B CẮT CẠNH AC Ở E
a) tính EA,EC
b)đường vuông góc với BE tại B cắt AC kéo dài ở P .tính PC?
a) Vì tam giác ABC cân tại A nên \(AC=AB=4\left(cm\right)\)
Vì BE là phân giác góc B \(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{BC}=\dfrac{4}{2}=2\Rightarrow EA=2EC\)
Ta có: \(EA+EC=AC\Rightarrow2EC+EC=4\Rightarrow3EC=4\Rightarrow EC=\dfrac{4}{3}\left(cm\right)\)
\(\Rightarrow EA=\dfrac{8}{3}\left(cm\right)\)
b) Vì \(BP\bot BE\) mà BE là phân giác trong góc B \(\Rightarrow BP\) là phân giác ngoài góc B
\(\Rightarrow\dfrac{PA}{PC}=\dfrac{AB}{BC}=2\Rightarrow PA=2PC\)
Ta có: \(PA-PC=AC\Rightarrow2PC-PC=4\Rightarrow PC=4\Rightarrow PA=8\)
Bài 1: Cho tam giác ABC cân tại A, đường phân giác góc B cắt AC tại D, biết AB = 15 cm, BC = 10cm
a) Tính AD, DC.
b) Đường vuông góc với BD tại B cắt đường thẳng AC kéo dài tại E. Tính EC
a, Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}=\dfrac{15}{25}=\dfrac{3}{5}\Rightarrow DC=6cm;AD=9cm\)
b, Ta có BD là pg, mà BD vuông BE
nên BE là pg ngoài tam giác ABC
\(\dfrac{EC}{AC}=\dfrac{AB}{BC}\Rightarrow EC=\dfrac{AB.AC}{BC}=\dfrac{45}{2}cm\)
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
Cho tam giác ABC cân tại A. Phân giác góc C cắt AB tại D. Biết AC = 24cm, BC = 12cm.
a) Tính AD, DB.
b) Đường thẳng vuông góc với CD tại C cắt đường thẳng AB kéo dài tại E. Tìm BE.
a.Ta có CDCD là phân giác góc C
→DA\AB=2\3
→EB\EA=CB\CA=1\2
2−1
.Ta có CDCD là phân giác góc C
→DAAB=23→DAAB=23
→EBEA=CBCA=12→EBEA=CBCA=12
→BEAB=1→BEAB=1
→BE=AB=AC=24
....
Cho tam giác ABC vuông ở A có AB = 12 cm, AC = 16cm. Kẻ đường thẳng vuông góc với BC tại B cắt cạnh AC kéo dài tại E.
c) Gọi CF là tia phân giác của góc BCE (F BE). Kẻ BH
vuông góc với CF tại H. Chứng minh : góc CEF = góc
CHA
d) Tính diện tích tứ giác EFMC
cho tam giác ABC cân tại A, AB=15cm,BC=10cm, đường phân giác của góc B cắt ac tại D
a/ tính AD, DC
b/ Đường vuông góc với BD tại B cắt đường Thẳng AC kéo dài tại E. Chứng minh BE là đường Phân giác ngoài tại đỉnh B của tam giác ACB và ính EC, EA,BD
Cho tam giác cân ABC ( AB=AC ) , đường phân giác góc B cắt AC tại D và cho biết AB = 15cm , BC=10cm.
a/ Tính AD , DC
b/ Đường vuông góc với BD tại B cắt đường thẳng AC kéo dài tại E . Tính EC
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
Cho tam giác cân ABC (AB=AC), đường phân giác góc B cắt AC tại D và cho biết AB=15cm, BC=10cm
a) Tính AD, DC
b) Đường vuông góc với BD tại B cắt đường thẳng AC kéo dài tại E. Tính EC
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
Cho tam giác ABC vuông tại B có. Tia phân giác của gócA cắt BC tại E. Kẻ KE vuông góc với AC tại K. a, Tính độ dài BC biết AB=6 cm; AC=10 cm b, Chứng minh tam giác ABK cân. Tính độ dài cạnh AK c, Từ C kẻ đường vuông góc với BC cắt tia AE ở Q. So sánh chu vi tam giác ABE với chu vi tam giác QCE
a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Vậy: BC=8cm
cho tam giác ABC cân tại A (AB >AC) H là trung điểm của BC. a) Cm rằng :AH là phân giác của BAC b) Tính độ dài AH nếu BC = 4cm ,AB=cm c) Tia phân giác của góc B cắt AH tại M. CM :tam giác BMC cân d) Đường thẳng đi qua A và song song với BC cắt BM tại N. CM :AB=AN e) Kẻ MK vuông góc AC tại K. CM: MH=MK f) CM: MC vuông góc với NC
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK