Cho ΔABC cân tại A, ^A=20 độ. Trên AB lấy D sao cho AD = BC. Tính ^BDC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy D sao cho AD=BC. Biết A=20 độ. Tính BDC
Cho tam giác ABC cân tại A , góc A = 20 . Trên cạnh AB lấy điểm D sao cho AD = BC . Tính số đo góc BDC.
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuộc trung trực cua BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuộc trung trực cua BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
Cho tam giác ABC cân tại A.Góc A = 20 độ. Trên AB lấy điểm D sao cho AD=BC.Tính góc BDC
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuộc trung trực cua BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
Suy ra : goc BDC = 30 độ
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều.
=> BM = CM => M thuộc trung trực của BC
Lại có: AB = AC (ABC cân tại A)
=> A thuộc trung trực của BC
Do đó: AM là trung trực của BC
=> AM là phân giác góc BAC
=> Góc MAB = góc MAC = góc BAC /2 = 20 độ/2 = 10 độ
Tam giác ABC cân tại A
=> Góc CBA = góc BCA = (180 - góc BAC)/2 = (180 - 20)/2 = 80 độ
Lại có: Góc MCA = góc ACB - góc MCB
Góc MCB = 60 độ (Tg BCM đều)
Suy ra: góc MCA = 20 độ
Xét tg CMA và tg ADC có:
AC chung
CM = DA (cũng bằng BC)
Góc MCA = góc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> Góc CDA = góc CMA = 150 độ
Mặt khác: Góc CDA + góc BDC = 180 độ (2 góc kê bù)
Suy ra: góc BDC = 30 độ
trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuoc trung truc cua BC
Do đó : AM la trung truc cua BC
=> AM la phan giac goc BAC
=> goc MAB = goc MAC = goc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
Cho tam giác ABC cân tại A có góc A = 20 độ. Trên cạnh AB lấy điểm D sao cho AD = BC. Tính góc BDC.
( Gợi ý: Trên nửa mặt phẳng có bờ AB chứa điểm C vẽ thêm tam giác đều AIB
Cho tam giác ABC cân tại A , góc A =20 độ , trên cạnh AB lấy điểm D sao cho AD =BC .Tính góc ADC
Cho tam giác ABC cân tại A có \(\widehat{A}\) = 20o.Trên cạnh AB lấy điểm D sao cho AD = BC . Tính \(\widehat{BDC}\)
Trên nửa mặt phẳng bờ BC dựng \(\Delta\)BCE đều
Xét \(\Delta\)BAE và \(\Delta\) CAE có:
AB = AC (\(\Delta\)ABC cân)
AE: chung
EB = EC (\(\Delta\)BCE đều)
\(\Rightarrow\)\(\Delta\)BAE = \(\Delta\) CAE (c.c.c)
\(\Rightarrow\)BAE = CAE (2 cạnh tương ứng)
\(\Rightarrow\)AE là phân giác BAC
\(\Rightarrow\)BAE = CAE = BAC : 2 = 20o : 2 = 10o
Vì \(\Delta\) ABC cân ở A \(\Rightarrow\)BCA = (180o - BAC) : 2 = 80o
Ta có: \(\Delta\)BCE đều \(\Rightarrow\)ECB = 60o
Có: ACE + ECB = ACB
\(\Rightarrow\)ACE = ACB - ECB = 80o - 60o = 20o
\(\Rightarrow\)ACE = CAD
Xét \(\Delta\)DAC và \(\Delta\)ECA có:
AC: chung
ACE = CAD (cmt)
EC = AD (= BC)
\(\Rightarrow\)\(\Delta\)DAC = \(\Delta\)ECA (c.g.c)
\(\Rightarrow\)EAC = ECA = 10o (2 góc tương ứng)
Ta có: BDC = DAC + ECA = 20o + 10o =30o
Vậy BDC = 30o
cho tam giác ABC cân tại A CÓ A=20 độ bc=2cm trên tia AB lấy D sao cho ACD =10 ĐỌ TÍNH AD
Cho tam giác ABC cân tại A có góc A=20 độ
Trên cạnh AB lấy D sao cho AD=BC. Tính góc ADC
Cho tam giác cân ABC cân tại A, có góc A=20 độ. Trên cạnh AB lấy D sao cho AD=BC. Tính góc ACD ?
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn