Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
nthv_.
31 tháng 10 2021 lúc 19:39

Giải hệ phương trình :(4.x^2 + 1).x + (y − 3) √5 − 2y = 04.x^2 + y^2 + 2.√3 − 4x = 7(x, y ∈ R)  - Hoc24

Tâm Cao
Xem chi tiết
Nguyễn Thành Trương
20 tháng 2 2021 lúc 14:15

Điều kiện: \(\left\{ \begin{array}{l} x > - 2\\ y > 1\\ x + y > 0 \end{array} \right.\)

Hệ phương trình tương đương: \(\left\{ \begin{array}{l} \sqrt {\dfrac{{x + y}}{{x + 2}}} + \sqrt {\dfrac{{x + y}}{{y - 1}}} = 2\\ {\left( {\dfrac{{x + 2}}{{x + y}}} \right)^2} + \left( {\dfrac{{y - 1}}{{x + y}}} \right)^2 = 2 \end{array} \right.\). Đặt \(\left\{ \begin{array}{l} a = \sqrt {\dfrac{{x + y}}{{x + 2}}} \\ b = \sqrt {\dfrac{{x + y}}{{y - 1}}} \end{array} \right.\) (với \(a,b > 0\))

Ta có hệ phương trình: \(\left\{ \begin{array}{l} a + b = 2\\ \dfrac{1}{{{a^4}}} + \dfrac{1}{{{b^4}}} = 2 \end{array} \right.\left( * \right)\)

Áp dụng BĐT AM - GM, ta có:

\(\begin{array}{l} 2 = a + b \geqslant 2\sqrt {ab} \Rightarrow ab \leqslant 1\\ 2 = \dfrac{1}{{{a^4}}} + \dfrac{1}{{{b^4}}} \geqslant 2\sqrt {\dfrac{1}{{{a^4}}}.\dfrac{1}{{{b^4}}}} \Rightarrow ab \geqslant 1 \end{array}\)

Thế nên \(\left( * \right) \Leftrightarrow a = b = 1\)

Ta lại có hệ phương trình: \(\left\{ \begin{array}{l} \dfrac{{x + y}}{{x + 2}} = 1\\ \dfrac{{x + y}}{{y - 1}} = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - 1\\ y = 2 \end{array} \right.\)

Vậy hệ phương trình có nghiệm là \((-1;2)\)

gãi hộ cái đít
20 tháng 2 2021 lúc 14:20

Đk: \(\left\{{}\begin{matrix}x>-2\\y>1\\x+y>0\end{matrix}\right.\)

hpt\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\2\left(x+y\right)^2=\left(x+2\right)^2+\left(y-1\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\\left(\dfrac{x+2}{x+y}\right)^2+\left(\dfrac{y-1}{x+y}\right)^2=2\end{matrix}\right.\)

Đặt \(a=\sqrt{\dfrac{x+y}{x+2}},b=\sqrt{\dfrac{x+y}{y-1}}\left(a,b>0\right)\)

Ta có hệ: \(\left\{{}\begin{matrix}a+b=2\\\dfrac{1}{a^4}+\dfrac{1}{b^4}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^4+b^4=2a^4b^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2=2a^4b^4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left(4-2ab\right)^2-2a^2b^2=2a^4b^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^4b^4=a^2b^2-8ab+8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^2b^2\left(a^2b^2-1\right)+8\left(ab-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left(ab-1\right)\left[a^2b^2\left(ab+1\right)+8\right]=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\ab-1\end{matrix}\right.\left(a,b>0\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}=1\\\sqrt{\dfrac{x+y}{y-1}}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=x+2\\x+y=y-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

ILoveMath
Xem chi tiết
Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 17:47

Từ pt thứ nhất: \(\Leftrightarrow x+1+\sqrt{\left(x+1\right)^2+1}=\left(-y\right)+\sqrt{\left(-y\right)^2+1}\)

Xét hàm \(f\left(t\right)=t+\sqrt{t^2+1}\Rightarrow f'\left(t\right)=1+\dfrac{t}{\sqrt{t^2+1}}=\dfrac{t+\sqrt{t^2+1}}{\sqrt{t^2+1}}\)

\(f'\left(t\right)>\dfrac{t+\sqrt{t^2}}{\sqrt{t^2+1}}=\dfrac{t+\left|t\right|}{\sqrt{t^2+1}}\ge0\Rightarrow f'\left(t\right)>0\) ; \(\forall t\)

\(\Rightarrow f\left(t\right)\) đồng biến trên R

\(\Rightarrow x+1=-y\Rightarrow y=-x-1\)

Thế xuống pt dưới:

\(x^3-\left(3x^2-2x-8\right)\sqrt{2x^2+x-1}=0\)

Bạn coi lại đề, pt vô tỉ này ko giải được

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 15:22

\(ĐK:x\le6;y\ge3\\ \left\{{}\begin{matrix}x^2+2y=xy+4\left(1\right)\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2-4+2y-xy=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)-y\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=y-2\end{matrix}\right.\)

Từ đó thế vào PT(2)

Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 16:07

Với \(x=y-2\Leftrightarrow x+2=y\)

\(\left(2\right)\Leftrightarrow x^2-x+3-x\sqrt{6-x}=\left(x-1\right)\sqrt{x-1}\left(1\le x\le6\right)\\ \Leftrightarrow2x^2-2x+6-2x\sqrt{6-x}=2\left(x-1\right)\sqrt{x-1}\\ \Leftrightarrow\left(x-\sqrt{6-x}\right)^2+x\left(x-1\right)=2\left(x-1\right)\sqrt{x-1}\\ \Leftrightarrow\left(x-\sqrt{6-x}\right)^2+\left(x-1\right)\left(x-2\sqrt{x-1}\right)=0\\ \Leftrightarrow\left(\dfrac{x^2-6+x}{x+\sqrt{6-x}}\right)^2+\dfrac{\left(x-1\right)\left(x^2-4x+4\right)}{x^2+2\sqrt{x-1}}=0\\ \Leftrightarrow\left[\dfrac{\left(x-2\right)\left(x+3\right)}{x+\sqrt{6-x}}\right]^2+\dfrac{\left(x-1\right)\left(x-2\right)^2}{x^2+2\sqrt{x-1}}=0\\ \Leftrightarrow\left(x-2\right)^2\left[\left(\dfrac{x+3}{x+\sqrt{6-x}}\right)^2+\dfrac{x-1}{x^2+2\sqrt{x-1}}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\left(\dfrac{x+3}{x+\sqrt{6-x}}\right)^2+\dfrac{x-1}{x^2+2\sqrt{x-1}}=0\left(1\right)\end{matrix}\right.\)

Dễ thấy \(\left(1\right)>0\) với \(x\ge1\)

Do đó \(x=2\Leftrightarrow y=4\)

Vậy HPT có nghiệm \(\left(x;y\right)=\left(2;4\right)\)

Đức Mai Văn
Xem chi tiết
Unruly Kid
3 tháng 3 2019 lúc 14:40

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

Unruly Kid
3 tháng 3 2019 lúc 14:44

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

Unruly Kid
3 tháng 3 2019 lúc 14:50

Điều kiện:\(9y^2+(2y+3)(y-x)\geq 0;xy\geq 0;-1\leq x\leq 1\)

Từ phương trình thứ nhất có \(x\geq 0\Rightarrow y\geq 0\)

Xét \(\left\{\begin{matrix} x=0\\ y=0 \end{matrix}\right.\) thỏa mãn hệ

Xét x,y không đồng thời bằng 0, ta có

\(\sqrt{9y^2+(2y+3)(y-x)}-3x+4\sqrt{xy}-4x=0\)

\(\Leftrightarrow \frac{9y^2+(2y+3)(y-x)-9x^2}{\sqrt{9y^2+(2y-3)(y-x)+3x}}+\frac{4(xy-x^2)}{\sqrt{xy}+x}=0\)

\(\Leftrightarrow (y-x)\left [ \frac{11y+9x+3}{\sqrt{11y^2+(2y-3)(y-x)+3x}}+\frac{4x}{\sqrt{xy}+x} \right ]=0\Leftrightarrow y=x\)

Tới đây thay vào phương trình (2) giải dễ dàng.

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Trương Huy Hoàng
31 tháng 1 2021 lúc 15:03

Mk hướng dẫn bạn cách làm thôi nha (Tại nó dài lắm!)

\(\left\{{}\begin{matrix}xy^2+2y^2-2=x^2+3x\\x+y=3\sqrt{y-1}\end{matrix}\right.\) (y \(\ge\) 1)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y^2\left(x+2\right)-\left(x+1\right)\left(x+2\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x+2\right)\left(y^2-x-1\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=0\\y^2-x-1=0\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-2\\x=y^2-1\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)

Xét các TH1: \(\left\{{}\begin{matrix}x=-2\\-2+y=3\sqrt{y-1}\end{matrix}\right.\)

Giải hpt tìm được: \(\left[{}\begin{matrix}y=\dfrac{13+\sqrt{117}}{2}\left(TM\right)\\y=\dfrac{13-\sqrt{117}}{2}\left(KTM\right)\end{matrix}\right.\)

\(\Rightarrow\) y = \(\dfrac{13+\sqrt{117}}{2}\)

Vậy ...

TH2: \(\left\{{}\begin{matrix}x=y^2-1\\y^2-1+y=3\sqrt{y-1}\end{matrix}\right.\) 

Chứng minh được pt thứ hai vô nghiệm

Vậy ...

Chúc bn học tốt!