S= 2^0 +2^2 +2^4+...+2^2014
a) Tìm chữ số tận cùng của S
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
Bài 3:
A =4 x 4 x 4 x...x 4(2023 chữ số 4)
vì 2023 : 2 = 1011 dư 1
A = (4 x 4) x (4 x 4) x...x(4 x 4) x 4 có 1011 nhóm (4 x 4)
A = \(\overline{..6}\) x \(\overline{..6}\) x \(\overline{..6}\) x 4
A = \(\overline{...6}\) x 4
A = \(\overline{...4}\)
Cho S= \(2^0+2^2+2^4+2^6+...+2^{2014}\)
a) Chứng tỏ S chia hết cho các số 7;17;51
b) Tìm chữ số tận cùng của S
Tìm số chữ số 0 tận cùng của : S = 1 × 2 × 3 × ... × 2022
Cho \(^{S=2^0+2^2+2^4+...+2^{2014}}\)
a) Chứng tỏ S chia hết 7; 17 và 51.
b) Tìm chữ số tận cùng của S.
a) số có chữ số tận cùng bằng 4 thì chia hết cho 2
Đ&S
b) số chia hết cho 2 thì có chữ số tận cùng bằng 4
Đ&S
c) số chia hết cho 2 và 5 thì có chữ số tận cùng bằng 0
Đ&S
d) số chia hết cho 5 thì có chữ số tận cùng bằng 5
Đ&S
S=2+2^2+2^3+2^4+.......2^100
Chứng tỏ rằng S:15
Tìm chữ số tận cùng của S bằng 2 cách
Cho S = 3^0 + 3^1 + 3^2 + ... + 3^30
Tìm chữ số tận cùng của S
S = 331 - 1 = ( 333....3 ) - 1
=> Chữ tận cùng của S là 2
Tìm chữ số tận cùng của S biết S = 2*2*2*…*2*2 (2011 số 2)
1.S=2.2.2.2.2...2.2.2 (2011 số 2)
=> 1.S=22011
Mà 22011=2.(22)2005=2.42005=2.(...4)
=>1.S=(...6)
Vì 1 nhân với số nào thì cũng bằng số đó.
=> Chữ số tận cùng S là 6.
Chắn chắn đúng 100%
giải:
Ta nhận thấy cứ 4 số 2 thì tạo thành 1 tích có tận cùng là 6. Mà tích các số có chữ số 6 ở hàng đơn vị luôn là 6. Mặt khác: 2011 = 4*502 + 3 => chữ số cuối cùng của dãy S là chữ số cuối cùng của tích: 6*2*2*2 = 8
Đáp số: 8
ko chắc lắm