\(\frac{x+3}{97}+\frac{x+5}{95}+\frac{x+9}{91}=\frac{x+91}{9}+\frac{x+92}{8}+\frac{x+61}{39}\)
Ta có\(\frac{x+3}{97}+\frac{x+5}{95}+\frac{x+9}{91}=\frac{x+91}{9}+\frac{x+92}{8}+\frac{x+61}{39}\)
<=> \(\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)+\left(\frac{x+9}{91}+1\right)=\left(\frac{x+91}{9}+1\right)+\left(\frac{x+92}{8}+1\right)+\left(\frac{x+61}{39}+1\right)\)
<=>\(\frac{x+100}{97}+\frac{x+100}{95}+\frac{x+100}{91}=\frac{x+100}{9}+\frac{x+100}{8}+\frac{x+100}{39}\)
<=>\(\frac{x+100}{97}+\frac{x+100}{95}+\frac{x+100}{91}-\frac{x+100}{9}-\frac{x+100}{8}-\frac{x+100}{39}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{97}+\frac{1}{95}+\frac{1}{91}-\frac{1}{9}-\frac{1}{8}-\frac{1}{39}\right)=0\)
Do \(\frac{1}{97}+\frac{1}{95}+\frac{1}{91}-\frac{1}{9}-\frac{1}{8}-\frac{1}{39}\ne0\)
Nên x+100=0 => x=-100
Giải các phương trình sau ;
a) x-4/96 + x-7/93 + x-8/92 + x-10/90 + x-15/85 = 5
b) x+3/97 + x+5/95 + x+9/91 = x+91/98 + x+92/93 + x+61/99
Giải pt sau:
1,x+2/2002 +x+5/1999 +x+201/1803=-3
2,x+1/99 +x+3/97 +x+5/95=x+9/91 +x+8/92 +x+7/93.
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Rightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=0\)
\(\Rightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Dễ thấy \(\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)>0\)nên x + 2004 = 0
Vậy x = -2004
Giải pt sau:
1,x+2/2002 +x+5/1999 +x+201/1803=-3
2,x+1/99 +x+3/97 +x+5/95=x+9/91 +x+8/92 +x+7/93.
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Leftrightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=-3+1+1+1\)
\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
\(\Leftrightarrow x+2004=0\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\right)\)
<=> x=-2004
a,\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(< =>\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)
\(< =>\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(< =>\left(x+2004\right).\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Do \(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\)
\(=>x+2004=0\)
\(=>x=-2004\)
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Leftrightarrow\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)
\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
\(\Leftrightarrow x=-2004\)
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+9}{91}+\frac{x+8}{92}+\frac{x+7}{93}\)
\(\Leftrightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)=\left(\frac{x+9}{91}+1\right)+\left(\frac{x+8}{92}+1\right)+\left(\frac{x+7}{93}+1\right)\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{91}+\frac{x+100}{92}+\frac{x+100}{93}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}-\frac{1}{91}-\frac{1}{92}-\frac{1}{93}\right)=0\)
Để ý thấy cụm đằng sau < 0 nên x=-100
[(x+1)/99]+[(x+3)/97]+[(x+5)/95]= [(x+7)/93]+[(x+9)/91]+[(x+11)/89]
các bạn giúp mình với a. Mình cảm ơn trước
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+7}{93}+\frac{x+9}{91}+\frac{x+11}{89}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+3}{97}+1+\frac{x+5}{95}+1\)\(=\frac{x+7}{93}+1+\frac{x+9}{91}+1+\frac{x+11}{89}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(=\frac{x+100}{93}+\frac{x+100}{91}+\frac{x+100}{89}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(-\frac{x+100}{93}-\frac{x+100}{91}-\frac{x+100}{89}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)=0\)
Mà \(\left(\frac{1}{99}< \frac{1}{97}< \frac{1}{95}< \frac{1}{93}< \frac{1}{91}< \frac{1}{89}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)< 0\)
\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Vậy x = -100
Tìm x, biết: \(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
\(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
\(\left(\frac{x+5}{95}+1\right)+\left(\frac{x+6}{94}+1\right)+\left(\frac{x+7}{93}+1\right)+\left(\frac{x+8}{92}+1\right)+\left(\frac{x+9}{91}+1\right)=-5+5=0\)
Chứng tỏ rằng tổng hoặc hiệu sau không chia hết 10
98 x 96 x 94 x 92 - 91 x 93 x 95 x 97
có 98,96,94,92 là các số chẵn suy ra 98 .96 .94 .92 là một số chẵn
91 , 93 ,95 ,97 là các số lẻ suy ra tích 91 . 93 . 95 . 97 là một số lẻ
mà chẵn - lẻ = lẻ không chia hết cho 10
vậy 98.96.94.92 - 91.93.95.97 không chia hết cho 10(ĐPCM)
ta thấy trong tích các số không chia hết cho 10
Vậy ta có : 98,96,94,92,91,93,95,97 không chia hết cho 10
suy ra tổng hoặc hiệu này ko chia hết cho 2.
BÀI 1:TÌM X
a)\(\frac{X}{108}=\frac{-7}{9}\times\frac{5}{6}\)
b)\(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
a)\(\frac{x}{108}=\frac{-7}{9}.\frac{5}{6}\)
\(\frac{x}{108}=\frac{-35}{54}\)
\(\frac{x}{108}=\frac{-70}{108}\)
\(x=-70\)
b)
giải các bất phương trình:
\(\frac{x+1}{65}+\frac{x+3}{63}< \frac{x+5}{61}+\frac{x+7}{59}\)
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4< =2x-1\)
Ta có :
\(\frac{x+1}{65}+\frac{x+3}{63}< \frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)< \left(\frac{x+5}{61}+1\right)+\left(\frac{x+7}{59}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+5}{61}-\frac{x+7}{59}< 0\)
\(\Leftrightarrow\)\(\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
Vì \(\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
\(\Rightarrow\)\(x+66>0\)
\(\Rightarrow\)\(x>-66\)
Vậy \(x>-66\)
Ta có :
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4\le0\)
\(\Leftrightarrow\)\(\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)+4\le0\)
\(\Leftrightarrow\)\(\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}+4\le0\)
\(\Leftrightarrow\)\(\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)+4\le0\)
Hết biết giải, mk mới lớp 7 :')